Open Access
Volume 29, 2022
Article Number 53
Number of page(s) 12
Published online 09 November 2022
  1. Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, Ben-Hur A, Reddy ASN. 2016. A survey of the sorghum transcriptome using single-molecule long reads. Nature Communications, 7, 11706. [CrossRef] [PubMed] [Google Scholar]
  2. Ahmed T, Zhang TT, Wang ZY, He KL, Bai SX. 2017. Molecular cloning, expression profile, odorant affinity, and stability of two odorant-binding proteins in Macrocentrus cingulum brischke (Hymenoptera: Braconidae). Archives of Insect Biochemistry and Physiology, 94(2), e21374. [CrossRef] [Google Scholar]
  3. Ali A, Thorgaard GH, Salem M. 2021. PacBio iso-seq improves the rainbow trout genome annotation and identifies alternative splicing associated with economically important phenotypes. Frontiers in Genetics, 12, 683408. [CrossRef] [PubMed] [Google Scholar]
  4. Armbruster P, White S, Dzundza J, Crawford J, Zhao XM. 2009. Identification of genes encoding atypical odorant-binding proteins in Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 46, 271–280. [CrossRef] [PubMed] [Google Scholar]
  5. Briand L, Lescop E, Bézirard V, Birlirakis N, Huet JC, Henry C, Guittet E, Pernollet JC. 2001. Isotopic double-labeling of two honeybee odorant-binding proteins secreted by the methylotrophic yeast Pichia pastoris. Protein Expression and Purification, 23(1), 167–174. [CrossRef] [PubMed] [Google Scholar]
  6. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. [CrossRef] [PubMed] [Google Scholar]
  7. Cheng JF, Yu T, Chen ZJ, Chen S, Chen YP, Gao L, Zhang WH, Jiang B, Bai X, Walker ED, Liu J, Lu YY. 2020. Comparative genomic and transcriptomic analyses of chemosensory genes in the citrus fruit fly Bactrocera (Tetradacus) minax. Scientific Reports, 10(1), 18068. [CrossRef] [PubMed] [Google Scholar]
  8. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 10(6), 563–569. [CrossRef] [PubMed] [Google Scholar]
  9. Du YL, Xu K, Zhao HT, Jiang YS, Li HQ. 2021. Identification and functional characterization of AcerOBP15 from Apis cerana cerana (Hymenoptera: Apidae). Apidologie, 52, 668–683. [CrossRef] [Google Scholar]
  10. Eyun S, Soh HY, Posavi M, Munro JB, Hughes DST, Murali SC, Qu JX, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni H, Worley KC, Muzny DM, Park E, Silva JC, Gibbs RA, Richards S, Lee CE. 2017. Evolutionary history of chemosensory-related gene families across the arthropoda. Molecular Biology and Evolution, 34(8), 1838–1862. [CrossRef] [PubMed] [Google Scholar]
  11. Fan J, Francis F, Liu Y, Chen JL, Cheng DF. 2011. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genetics and Molecular Research, 10(4), 3056–3069. [CrossRef] [PubMed] [Google Scholar]
  12. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR. 2015. HMMER web server: 2015 update. Nucleic Acids Research, 43, W30–38. [CrossRef] [PubMed] [Google Scholar]
  13. Foret S, Maleszka R. 2006. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome research, 16(11), 1404–1413. [CrossRef] [PubMed] [Google Scholar]
  14. Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH. 2009. The odorant binding protein gene family from the genome of silkworm Bombyx mori. BMC Genomics, 10, 332. [CrossRef] [PubMed] [Google Scholar]
  15. Gu SH, Zhou JJ, Wang GR, Zhang YJ, Guo YY. 2013. Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm moth Agrotis ipsilon. Insect Biochemistry and Molecular Biology, 43, 237–251. [CrossRef] [PubMed] [Google Scholar]
  16. He YY, Wang K, Zeng Y, Guo ZJ, Zhang YJ, Wu QJ, Wang SL. 2020. Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics, 112(3), 2291–2301. [CrossRef] [PubMed] [Google Scholar]
  17. Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA. 2002. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Research, 12(9), 1357–1369. [CrossRef] [PubMed] [Google Scholar]
  18. Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M, Hon L, Sudmant PH, Graves TA, Alkan C, Dennis MY, Wilson RK, Turner SW, Korlach J, Eichler EE. 2014. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Research, 24(4), 688–696. [CrossRef] [PubMed] [Google Scholar]
  19. Hull JJ, Perera OP, Snodgrass GL. 2014. Cloning and expression profiling of odorant-binding proteins in the tarnished plant bug, Lygus lineolaris. Insect Molecular Biology, 23(1), 78–97. [CrossRef] [PubMed] [Google Scholar]
  20. Jia XJ, Wang HX, Yan ZG, Zhang MZ, Wei CH, Qin XC, Ji WR, Falabella P, Du YL. 2016. Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Scientific Reports, 6(1), 29067. [CrossRef] [PubMed] [Google Scholar]
  21. Jiang XC, Liu S, Jiang XY, Wang ZW, Xiao JJ, Gao Q, Sheng CW, Shi TF, Zeng HR, Yu LS, Cao HQ. 2021. Identification of olfactory genes from the greater wax moth by antennal transcriptome analysis. Frontiers in Physiology, 12, 663040. [CrossRef] [PubMed] [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. 2015. Mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. [Google Scholar]
  23. Leal WS. 2013. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58(1), 373–391. [CrossRef] [PubMed] [Google Scholar]
  24. Li G, Du J, Li Y, Wu J. 2015. Identification of putative olfactory genes from the oriental fruit moth Grapholita molesta via an antennal transcriptome analysis. PLoS One, 10(11), e0142193. [CrossRef] [PubMed] [Google Scholar]
  25. Li H, Wang P, Zhang L, Xu X, Cao Z, Zhang L. 2018. Expressions of olfactory proteins in locust olfactory organs and a palp odorant receptor involved in plant aldehydes detection. Frontiers in Physiology, 9, 663. [CrossRef] [PubMed] [Google Scholar]
  26. Li MY, Jiang XY, Qi YZ, Huang YJ, Li SG, Liu S. 2020. Identification and expression profiles of 14 odorant-binding protein genes from Pieris rapae (Lepidoptera: Pieridae). Journal of Insect Science, 20(5), 1–10. [Google Scholar]
  27. Li RL, Zhang L, Fang Y, Han B, Li JK. 2013. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genomics, 14(1), 766–777. [CrossRef] [PubMed] [Google Scholar]
  28. Li YJ, Chen HC, Hong TL, Yan MW, Wang J, Shao ZM, Wu FA, Sheng S, Wang J. 2021. Identification of chemosensory genes by antennal transcriptome analysis and expression profiles of odorant-binding proteins in parasitoid wasp Aulacocentrum confusum. Comparative Biochemistry and Physiology Part D Genomics and Proteomics, 40, 100881. [CrossRef] [Google Scholar]
  29. Li ZQ, Zhang S, Zhou SF, Luo JY, Cui JJ. 2017. Tissue expression profiling and ligand-binding properties of HarmOBP16 of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Acta Entomologica Sinica, 60(8), 891–899. [Google Scholar]
  30. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods, 25, 402–408. [CrossRef] [PubMed] [Google Scholar]
  31. Ma L, Li ZQ, Lei B, Cai XM, Luo ZX, Zhang YJ, Chen ZM. 2016. Identification and comparative study of chemosensory genes related to host selection by legs transcriptome analysis in the tea geometrid Ectropis obliqua. PLoS One, 11(3), e0149591. [CrossRef] [PubMed] [Google Scholar]
  32. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35, 182–185. [Google Scholar]
  33. Nishimura O, Brillada C, Yazawa S, Maffei ME, Arimura G. 2012. Transcriptome pyrosequencing of the parasitoid wasp Cotesia vestalis: genes involved in the antennal odorant-sensory system. PLoS One, 7(11), e50664. [CrossRef] [PubMed] [Google Scholar]
  34. Pelosi P, Iovinella I, Felicioli A, Dani FR. 2014. Soluble proteins of chemical communication: an overview across arthropods. Frontiers in Physiology, 5, 320. [CrossRef] [PubMed] [Google Scholar]
  35. Pelosi P, Mastrogiacomo R, Iovinella I, Tuccori E, Persaud KC. 2014. Structure and biotechnological applications of odorant-binding proteins. Applied Microbiology and Biotechnology, 98(1), 61–70. [CrossRef] [PubMed] [Google Scholar]
  36. Peng Y, Wang SN, Li KM, Liu JT, Zheng Y, Shan S, Yang YQ, Li RJ, Zhang YJ, Guo YY. 2017. Identification of odorant binding proteins and chemosensory proteins in Microplitis mediator as well as functional characterization of chemosensory protein 3. PLoS One, 12(7), e0180775. [CrossRef] [PubMed] [Google Scholar]
  37. Ponzio C, Weldegergis BT, Dicke M, Gols R. 2016. Compatible and incompatible pathogen–plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps. Functional Ecology, 30, 1779–1789. [CrossRef] [Google Scholar]
  38. Scheuermann EA, Smith DP. 2019. Odor-specific deactivation defects in a Drosophila odorant-binding protein mutant. Genetics, 213(3), 897–909. [CrossRef] [PubMed] [Google Scholar]
  39. Sha L, Picimbon JF, Ji SD, Kan YC, Qiao CL, Zhou JJ, Pelosi P. 2008. Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. Biochemical and Biophysical Research Communications, 372(3), 464–468. [CrossRef] [PubMed] [Google Scholar]
  40. Smartt CT, Erickson JS. 2009. Expression of a novel member of the odorant-binding protein gene family in Culex nigripalpus (Diptera: Culicidae). Journal of Medical Entomology, 46(6), 1376–1381. [CrossRef] [PubMed] [Google Scholar]
  41. Song M, Jiang X, Wang XM, Li JD, Zhu F, Tu XB, Zhang ZH, Ban LP. 2016. Male tarsi specific odorant-binding proteins in the diving beetle Cybister japonicus sharp. Scientific Reports, 6, 31848. [CrossRef] [PubMed] [Google Scholar]
  42. Song YQ, Song ZY, Dong JF, Lv QH, Chen QX, Sun HZ. 2021. Identification and comparative expression analysis of odorant-binding proteins in the reproductive system and antennae of Athetis dissimilis. Scientific Reports, 11(1), 13941. [CrossRef] [PubMed] [Google Scholar]
  43. Song YQ, Sun HZ, Du J. 2018. Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans Distant (Hemiptera: Lygaeidae). Scientific Reports, 8(1), 7803. [CrossRef] [PubMed] [Google Scholar]
  44. Sun L, Li Y, Zhang Z, Guo H, Xiao Q, Wang Q, Zhang Y. 2019. Expression patterns and ligand binding characterization of Plus-C odorant-binding protein 14 from Adelphocoris lineolatus (Goeze). Biochemical and Molecular Biology, 227, 75–82. [CrossRef] [Google Scholar]
  45. Tvedte ES, Walden KKO, McElroy KE, Werren JH, Forbes AA, Hood GR, Logsdon JM, Feder JL, Robertson HM. 2019. Genome of the parasitoid wasp Diachasma alloeum, an emerging model for ecological speciation and transitions to asexual reproduction. Genome Biology and Evolution, 11(10), 2767–2773. [CrossRef] [PubMed] [Google Scholar]
  46. Vogt RG, Riddiford LM. 1981. Pheromone binding and inactivation by moth antennae. Nature, 293, 161–163. [CrossRef] [PubMed] [Google Scholar]
  47. Wang L, Bi YD, Liu M, Li W, Liu M, Di SF, Yang S, Fan C, Bai L, Lai YC. 2020. Identification and expression profiles analysis of odorant-binding proteins in soybean aphid, Aphis glycines (Hemiptera: Aphididae). Insect Science, 27(5), 1019–1030. [CrossRef] [PubMed] [Google Scholar]
  48. Wang Q, Zhou JJ, Liu JT, Huang GZ, Xu WY, Zhang Q, Chen JL, Zhang YJ, Li XC, Gu SH. 2019. Integrative transcriptomic and genomic analysis of odorant binding proteins and chemosensory proteins in aphids. Insect Molecular Biology, 28(1), 1–22. [CrossRef] [PubMed] [Google Scholar]
  49. Xu PX, Zwiebel LJ, Smith DP. 2003. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Molecular Biology, 12, 549–560. [CrossRef] [PubMed] [Google Scholar]
  50. Xue W, Fan J, Zhang Y, Xu Q, Han Z, Sun J, Chen J. 2016. Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of Sitobion avenae. PLoS One, 11(8), e0161839. [CrossRef] [PubMed] [Google Scholar]
  51. Yang YZ, Li WB, Tao J, Zong SX. 2019. Antennal transcriptome analyses and olfactory protein identification in an important wood-boring moth pest, Streltzoviella insularis (Lepidoptera: Cossidae). Scientific Reports, 9(1), 17951. [CrossRef] [PubMed] [Google Scholar]
  52. Zhang H, Jiang JX, Chen YJ, Wang JY, Ji XY, Wan NF. 2020. Contribution of a parasitoid species to multiplication and transmission of a multiple nucleopolyhedrovirus in caterpillars. Journal of Applied Entomology, 144(4), 308–314. [CrossRef] [Google Scholar]
  53. Zhang Y, Shen C, Xia D, Wang J, Tang Q. 2019. Characterization of the expression and functions of two odorant-binding proteins of Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea). Insects, 10(11), 409. [CrossRef] [Google Scholar]
  54. Zhang Y, Tan Y, Zhou XR, Pang BP. 2018. A whole-body transcriptome analysis and expression profiling of odorant binding protein genes in Oedaleus infernalis. Comparative Biochemistry and Physiology Part D Genomics and Proteomics, 28, 134–141. [CrossRef] [Google Scholar]
  55. Zhang YC, Gao SS, Xue S, Zhang KP, Wang JS, Li B. 2020. Odorant-binding proteins contribute to the defense of the red flour beetle, Tribolium castaneum, against essential oil of Artemisia vulgaris. Frontiers in Physiology, 11, 819. [CrossRef] [PubMed] [Google Scholar]
  56. Zhang ZC, Wang MQ, Lu YB, Zhang G. 2009. Molecular characterization and expression pattern of two general odorant binding proteins from the diamondback moth, Plutella xylostella. Journal of Chemical Ecology, 35(10), 1188–1196. [CrossRef] [PubMed] [Google Scholar]
  57. Zhao Y, Wang FZ, Zhang XY, Zhang S, Guo SL, Zhu GP, Liu Q, Li M. 2016. Transcriptome and expression patterns of chemosensory genes in antennae of the parasitoid wasp Chouioia cunea. PLoS One, 11(2), e448159. [Google Scholar]
  58. Zhou CX, Min SF, Tang YL, Wang MQ. 2015. Analysis of antennal transcriptome and odorant binding protein expression profiles of the recently identified parasitoid wasp, Sclerodermus sp. Comparative Biochemistry and Physiology Part D Genomics and Proteomics, 16, 10–19. [CrossRef] [Google Scholar]
  59. Zhou JJ, Vieira FG, He XL, Smadja C, Liu R, Rozas J, Field LM. 2010. Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Molecular Biology, 19(S2), 113–122. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.