Open Access
Research Article
Issue
Parasite
Volume 29, 2022
Article Number 41
Number of page(s) 14
DOI https://doi.org/10.1051/parasite/2022042
Published online 09 September 2022
  1. Ayón-Núñez DA, Fragoso G, Bobes RJ, Laclette JP. 2018. Plasminogen-binding proteins as an evasion mechanism of the host’s innate immunity in infectious diseases. Bioscience Reports, 38(5), BSR20180705. [CrossRef] [PubMed] [Google Scholar]
  2. Barthel D, Schindler S, Zipfel PF. 2012. Plasminogen is a complement inhibitor. Journal of Biological Chemistry, 287, 18831–18842. [CrossRef] [Google Scholar]
  3. Candela M, Bergmann S, Vici M, Vitali B, Turroni S, Eikmanns BJ, Hammerschmidt S, Brigidi P. 2007. Binding of human plasminogen to Bifidobacterium. Journal of Bacteriology, 189, 5929–5936. [CrossRef] [PubMed] [Google Scholar]
  4. Carreras J, Bartrons R, Grisolía S. 1980. Vanadate inhibits 2,3-bisphosphoglycerate dependent phosphoglycerate mutases but does not affect the 2,3-bisphosphoglycerate independent phosphoglycerate mutases. Biochemical and Biophysical Research Communications, 96, 1267–1273. [CrossRef] [PubMed] [Google Scholar]
  5. Cass CL, Johnson JR, Califf LL, Xu T, Hernandez HJ, Stadecker MJ, Yates JR, Williams DL. 2007. Proteomic analysis of Schistosoma mansoni egg secretions. Molecular and Biochemical Parasitology, 155, 84–93. [CrossRef] [PubMed] [Google Scholar]
  6. Castiblanco-Valencia MM, Fraga TR, Pagotto AH, Serrano SMDT, Abreu PAE, Barbosa AS, Isaac L. 2016. Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: A new role of LigA and LigB in invasion and complement immune evasion. Immunobiology, 221, 679–689. [CrossRef] [PubMed] [Google Scholar]
  7. Castro-Borges W, Dowle A, Curwen RS, Thomas-Oates J, Wilson RA. 2011. Enzymatic shaving of the tegument surface of live schistosomes for proteomic analysis: A rational approach to select vaccine candidates. PLoS Neglected Tropical Diseases, 5(3), e993. [CrossRef] [PubMed] [Google Scholar]
  8. Chaudhry R, Varacallo M. 2020. Biochemistry, glycolysis, in StatPearls. StatPearls Publishing: Treasure Island, FL. [Google Scholar]
  9. Colley DG, Bustinduy AL, Secor WE, King CH. 2014. Human schistosomiasis. Lancet (London, England), 383, 2253–2264. [CrossRef] [PubMed] [Google Scholar]
  10. Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NAR, Booth NA. 2003. Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Molecular Microbiology, 47, 1637–1651. [CrossRef] [PubMed] [Google Scholar]
  11. Da’dara AA, Skelly PJ. 2015. Gene suppression in schistosomes using RNAi, in Parasite Genomics Protocols. Peacock C, Editor. Humana Press: New York, NY. p. 143–164. [CrossRef] [PubMed] [Google Scholar]
  12. Dhamodharan R, Hoti SL, Sankari T. 2012. Characterization of cofactor-independent phosphoglycerate mutase isoform-1 (Wb-iPGM) gene: a drug and diagnostic target from human lymphatic filarial parasite, Wuchereria bancrofti. Infection, Genetics & Evolution, 12, 957–965. [CrossRef] [Google Scholar]
  13. Figueiredo BC, Da’dara AA, Oliveira SC, Skelly PJ. 2015. Schistosomes enhance plasminogen activation: the role of tegumental enolase. PLoS Pathogens, 11(12), e1005335. [CrossRef] [PubMed] [Google Scholar]
  14. Fothergill-Gilmore L, Watson H. 1989. The phosphoglycerate mutases, in Advances in Enzymology and Related Areas of Molecular Biology. Meister A, Editor. John Wiley & Sons: New York, NY. p. 227–313. [PubMed] [Google Scholar]
  15. Fraser HI, Kvaratskhelia M, White MF. 1999. The two analogous phosphoglycerate mutases of Escherichia coli. FEBS Letters, 455, 344–348. [CrossRef] [PubMed] [Google Scholar]
  16. Gründel A, Jacobs E, Dumke R. 2016. Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix. International Journal of Medical Microbiology, 306, 675–685. [CrossRef] [PubMed] [Google Scholar]
  17. Gründel A, Pfeiffer M, Jacobs E, Dumke R. 2016. Network of surface-displayed glycolytic enzymes in Mycoplasma pneumoniae and their interactions with human plasminogen. Infection and Immunity, 84, 666–676. [CrossRef] [Google Scholar]
  18. Gryseels B, Polman K, Clerinx J, Kestens L. 2006. Human schistosomiasis. Lancet, 368, 1106–1118. [CrossRef] [PubMed] [Google Scholar]
  19. Hellwage J, Kühn S, Zipfel PF. 1997. The human complement regulatory factor-H-like protein 1, which represents a truncated form of factor H, displays cell-attachment activity. Biochemical Journal, 326, 321–327. [CrossRef] [PubMed] [Google Scholar]
  20. Hitosugi T, Zhou L, Fan J, Elf S, Zhang L, Xie J, Wang Y, Gu T-L, Alečković M, LeRoy G, Kang Y, Kang H-B, Seo J-H, Shan C, Jin P, Gong W, Lonial S, Arellano ML, Khoury HJ, Chen GZ, Shin DM, Khuri FR, Boggon TJ, Kang S, He C, Chen J. 2013. Tyr26 phosphorylation of PGAM1 provides a metabolic advantage to tumours by stabilizing the active conformation. Nature Communications, 4, 1790. [CrossRef] [PubMed] [Google Scholar]
  21. Jedrzejas MJ. 2000. Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase. Progress in Biophysics and Molecular Biology, 73, 263–287. [CrossRef] [PubMed] [Google Scholar]
  22. Karkowska-Kuleta J, Kedracka-Krok S, Rapala-Kozik M, Kamysz W, Bielinska S, Karafova A, Kozik A. 2011. Molecular determinants of the interaction between human high molecular weight kininogen and Candida albicans cell wall: identification of kininogen-binding proteins on fungal cell wall and mapping the cell wall-binding regions on kininogen molecule. Peptides, 32, 2488–2496. [CrossRef] [PubMed] [Google Scholar]
  23. Karkowska-Kuleta J, Smolarz M, Seweryn-Ozog K, Satala D, Zawrotniak M, Wronowska E, Bochenska O, Kozik A, Nobbs AH, Gogol M, Rapala-Kozik M. 2021. Proteinous components of neutrophil extracellular traps are arrested by the cell wall proteins of Candida albicans during fungal infection, and can be used in the host invasion. Cells, 10, 2736. [CrossRef] [PubMed] [Google Scholar]
  24. Kinnby B, Booth NA, Svensäter G. 2008. Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology, 154, 924–931. [CrossRef] [PubMed] [Google Scholar]
  25. Knudsen GM, Medzihradszky KF, Lim K-C, Hansell E, McKerrow JH. 2005. Proteomic analysis of Schistosoma mansoni cercarial secretions. Molecular & Cellular Proteomics, 4, 1862–1875. [CrossRef] [PubMed] [Google Scholar]
  26. Lewis FA, Tucker MS. 2014. Schistosomiasis, in Digenetic Trematodes. Toledo R, Fried B, Editors. Springer: New York, NY. p. 47–75. [CrossRef] [PubMed] [Google Scholar]
  27. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408. [CrossRef] [PubMed] [Google Scholar]
  28. Lopez CM, Wallich R, Riesbeck K, Skerka C, Zipfel PF. 2014. Candida albicans uses the surface protein gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin. PLoS One, 9(3), e90796. [CrossRef] [PubMed] [Google Scholar]
  29. McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou X-N. 2018. Schistosomiasis. Nature Reviews Disease Primers, 4, 13. [CrossRef] [PubMed] [Google Scholar]
  30. Milligan JN, Jolly ER. 2011. Cercarial transformation and in vitro cultivation of Schistosoma mansoni schistosomules. Journal of Visualized Experiments, 54, 3191. [Google Scholar]
  31. Molehin AJ. 2020. Current understanding of immunity against schistosomiasis: impact on vaccine and drug development. Research and Reports in Tropical Medicine, 11, 119–128. [CrossRef] [Google Scholar]
  32. Nation CS, Da’dara AA, Marchant JK, Skelly PJ. 2020. Schistosome migration in the definitive host. PLOS Neglected Tropical Diseases, 14, e0007951. [CrossRef] [PubMed] [Google Scholar]
  33. Oslund RC, Su X, Haugbro M, Kee J-M, Esposito M, David Y, Wang B, Ge E, Perlman DH, Kang Y, Muir TW, Rabinowitz JD. 2017. Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate. Nature Chemical Biology, 13, 1081–1087. [CrossRef] [PubMed] [Google Scholar]
  34. Pessoa JC, Etcheverry S, Gambino D. 2015. Vanadium compounds in medicine. Coordination Chemistry Reviews, 301, 24–48. [CrossRef] [Google Scholar]
  35. Pirovich DB, Da’dara AA, Skelly PJ. 2020. Schistosoma mansoni glyceraldehyde-3-phosphate dehydrogenase enhances formation of the blood-clot lysis protein plasmin. Biology Open, 9(3), bio050385. [CrossRef] [PubMed] [Google Scholar]
  36. Pirovich D, Da’dara AA, Skelly PJ. 2019. Why do intravascular schistosomes coat themselves in glycolytic enzymes? BioEssays, 41, 1900103. [CrossRef] [Google Scholar]
  37. Poltermann S, Kunert A, von der Heide M, Eck R, Hartmann A, Zipfel PF. 2007. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. Journal of Biological Chemistry, 282, 37537–37544. [CrossRef] [Google Scholar]
  38. Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, Silva ND, Velarde GS, Anderson TJC, Clark RC, Davidson C, Dillon GP, Holroyd NE, LoVerde PT, Lloyd C, McQuillan J, Oliveira G, Otto TD, Parker-Manuel SJ, Quail MA, Wilson RA, Zerlotini A, Dunne DW, Berriman M. 2012. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLOS Neglected Tropical Diseases, 6, e1455. [CrossRef] [PubMed] [Google Scholar]
  39. Ramajo-Hernández A, Pérez-Sánchez R, Ramajo-Martín V, Oleaga A. 2007. Schistosoma bovis: plasminogen binding in adults and the identification of plasminogen-binding proteins from the worm tegument. Experimental Parasitology, 115, 83–91. [CrossRef] [PubMed] [Google Scholar]
  40. Raverdy S, Zhang Y, Foster J, Carlow CKS. 2007. Molecular and biochemical characterization of nematode cofactor independent phosphoglycerate mutases. Molecular and Biochemical Parasitology, 156, 210–216. [CrossRef] [PubMed] [Google Scholar]
  41. Rigden DJ. 2008. The histidine phosphatase superfamily: structure and function. Biochemical Journal, 409, 333–348. [CrossRef] [PubMed] [Google Scholar]
  42. Samoil V, Dagenais M, Ganapathy V, Aldridge J, Glebov A, Jardim A, Ribeiro P. 2018. Vesicle-based secretion in schistosomes: analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni. Scientific Reports, 8, 3286. [CrossRef] [PubMed] [Google Scholar]
  43. Silveira GO, Amaral MS, Coelho HS, Maciel LF, Pereira ASA, Olberg GGO, Miyasato PA, Nakano E, Verjovski-Almeida S. 2021. Assessment of reference genes at six different developmental stages of Schistosoma mansoni for quantitative RT-PCR. Scientific Reports, 11, 16816. [CrossRef] [PubMed] [Google Scholar]
  44. Song L, Xu Z, Yu X. 2007. Molecular cloning and characterization of a phosphoglycerate mutase gene from Clonorchis sinensis. Parasitology Research, 101, 709–714. [CrossRef] [PubMed] [Google Scholar]
  45. Stankiewicz PJ, Hass LF. 1986. The catalytic bimodality of mammalian phosphoglycerate mutase. Journal of Biological Chemistry, 261, 12715–12721. [CrossRef] [Google Scholar]
  46. Stassen JM, Arnout J, Deckmyn H. 2004. The hemostatic system. Current Medicinal Chemistry, 11, 2245–2260. [CrossRef] [PubMed] [Google Scholar]
  47. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J. 2006. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infectious Diseases, 6, 411–425. [CrossRef] [Google Scholar]
  48. Wen Y-A, Zhou B-W, Lv D-J, Shu F-P, Song X-L, Huang B, Wang C, Zhao S-C. 2018. Phosphoglycerate mutase 1 knockdown inhibits prostate cancer cell growth, migration, and invasion. Asian Journal of Andrology, 20, 178–183. [CrossRef] [PubMed] [Google Scholar]
  49. Wendt G, Zhao L, Chen R, Liu C, O’Donoghue AJ, Caffrey CR, Reese ML, Collins JJ. 2020. A single-cell RNAseq atlas of Schistosoma mansoni identifies a key regulator of blood feeding. Science, 369, 1644–1649. [CrossRef] [PubMed] [Google Scholar]
  50. Wilson AR, Jones MK. 2021. Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. International Journal for Parasitology, 51(13–14), 1213–1232. [CrossRef] [PubMed] [Google Scholar]
  51. Winn SI, Watson HC, Harkins RN, Fothergill LA. 1981. Structure and activity of phosphoglycerate mutase. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 293, 121–130. [PubMed] [Google Scholar]
  52. Zhang H, Zheng J, Yi L, Li Y, Ma Z, Fan H, Lu C. 2014. The identification of six novel proteins with fibronectin or collagen type I binding activity from Streptococcus suis serotype 2. Journal of Microbiology, 52, 963–969. [CrossRef] [PubMed] [Google Scholar]
  53. Zhang Y, Sampathkumar A, Kerber SM-L, Swart C, Hille C, Seerangan K, Graf A, Sweetlove L, Fernie AR. 2020. A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nature Communications, 11, 4509. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.