Open Access
Volume 29, 2022
Article Number 24
Number of page(s) 11
Published online 09 May 2022
  1. Arner ES, Holmgren A. 2000. Physiological functions of thioredoxin and thioredoxin reductase. European Journal of Biochemisty, 267(20), 6102–6109. [CrossRef] [Google Scholar]
  2. Bochu W, Chunhong T, Liancai Z, Qi C. 2004. Investigation on the effects of diamide on NO production in vascular endothelial cells (VEC). Colloids and Surfaces B: Biointerfaces, 35(3–4), 205–208. [CrossRef] [Google Scholar]
  3. Brigelius-Flohe R, Maiorino M. 2013. Glutathione peroxidases. Biochimica et Biophysica Acta, 1830(5), 3289–3303. [CrossRef] [PubMed] [Google Scholar]
  4. Cheng C, Dong Z, Han X, Wang H, Jiang L, Sun J, Yang Y, Ma T, Shao C, Wang X, Chen Z, Fang W, Freitag NE, Huang H, Song H. 2017. Thioredoxin A is essential for motility and contributes to host infection of Listeria monocytogenes via redox interactions. Frontiers in Cellular Infection Microbiology, 7, 287. [CrossRef] [Google Scholar]
  5. Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Burglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Heng Tan CS, Hutchins AP, Weinmeier T, Rattei T, Chu JS, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu CH, Tang P, Hegemann P, Fromm H, Raoult D, Greub G, Miranda-Saavedra D, Chen N, Nash P, Ginger ML, Horn M, Schaap P, Caler L, Loftus BJ. 2013. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 14(2), R11. [CrossRef] [PubMed] [Google Scholar]
  6. da Silva MT, Caldas VE, Costa FC, Silvestre DA, Thiemann OH. 2013. Selenocysteine biosynthesis and insertion machinery in Naegleria gruberi. Molecular and Biochemical Parasitology, 188(2), 87–90. [CrossRef] [PubMed] [Google Scholar]
  7. da Silva MT, Silva-Jardim I, Portapilla GB, de Lima GM, Costa FC, Anibal Fde F, Thiemann OH. 2016. In vivo and in vitro auranofin activity against Trypanosoma cruzi: possible new uses for an old drug. Experimental Parasitology, 166, 189–193. [CrossRef] [PubMed] [Google Scholar]
  8. de Oliveira MA, Tairum CA, Netto LES, de Oliveira ALP, Aleixo-Silva RL, Cabrera VIM, Breyer CA, Dos Santos MC. 2021. Relevance of peroxiredoxins in pathogenic microorganisms. Applied Microbiology and Biotechnology, 105(14–15), 5701–5717. [CrossRef] [PubMed] [Google Scholar]
  9. Debnath A, Parsonage D, Andrade RM, He C, Cobo ER, Hirata K, Chen S, Garcia-Rivera G, Orozco E, Martinez MB, Gunatilleke SS, Barrios AM, Arkin MR, Poole LB, McKerrow JH, Reed SL. 2012. A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nature Medicine, 18(6), 956–960. [CrossRef] [PubMed] [Google Scholar]
  10. Du Y, Zhang H, Lu J, Holmgren A. 2012. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. Journal of Biological Chemistry, 287(45), 38210–38219. [CrossRef] [Google Scholar]
  11. Enjalbert B, Nantel A, Whiteway M. 2003. Stress-induced gene expression in Candida albicans: absence of a general stress response. Molecular Biology of the Cell, 14(4), 1460–1467. [CrossRef] [PubMed] [Google Scholar]
  12. Feng L, Pomel S, Latre de Late P, Taravaud A, Loiseau PM, Maes L, Cho-Ngwa F, Bulman CA, Fischer C, Sakanari JA, Ziniel PD, Williams DL, Davioud-Charvet E. 2020. Repurposing auranofin and evaluation of a new gold(i) compound for the search of treatment of human and cattle parasitic diseases: from protozoa to helminth infections. Molecules, 25(21), 5075. [CrossRef] [Google Scholar]
  13. Gaber A, Yoshimura K, Tamoi M, Takeda T, Nakano Y, Shigeoka S. 2004. Induction and functional analysis of two reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione peroxidase-like proteins in Synechocystis PCC 6803 during the progression of oxidative stress. Plant Physiology, 136(1), 2855–2861. [CrossRef] [PubMed] [Google Scholar]
  14. Garrido EO, Grant CM. 2002. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Molecular Microbiology, 43(4), 993–1003. [CrossRef] [PubMed] [Google Scholar]
  15. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11(12), 4241–4257. [CrossRef] [PubMed] [Google Scholar]
  16. Gutierrez-Escobedo G, Hernandez-Carreon O, Morales-Rojano B, Revuelta-Rodriguez B, Vazquez-Franco N, Castano I, De Las Penas A. 2020. Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence. Fungal Genetics and Biology, 135, 103287. [CrossRef] [PubMed] [Google Scholar]
  17. Herbette S, Roeckel-Drevet P, Drevet JR. 2007. Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers. FEBS Journal, 274(9), 2163–2180. [CrossRef] [Google Scholar]
  18. Holmgren A, Johansson C, Berndt C, Lonn ME, Hudemann C, Lillig CH. 2005. Thiol redox control via thioredoxin and glutaredoxin systems. Biochemical Society Transactions, 33(Pt 6), 1375–1377. [CrossRef] [PubMed] [Google Scholar]
  19. Hopper M, Yun JF, Zhou B, Le C, Kehoe K, Le R, Hill R, Jongeward G, Debnath A, Zhang L, Miyamoto Y, Eckmann L, Land KM, Wrischnik LA. 2016. Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo. International Journal of Antimicrobial Agents and Chemotherapy, 48(6), 690–694. [CrossRef] [Google Scholar]
  20. Jeong SY, Choi CH, Kim JS, Park SJ, Kang SO. 2006. Thioredoxin reductase is required for growth and regulates entry into culmination of Dictyostelium discoideum. Molecular Microbiology, 61(6), 1443–1456. [CrossRef] [PubMed] [Google Scholar]
  21. Jordan A, Aslund F, Pontis E, Reichard P, Holmgren A. 1997. Characterization of Escherichia coli NrdH. A glutaredoxin-like protein with a thioredoxin-like activity profile. Journal of Biological Chemistry, 272(29), 18044–18050. [CrossRef] [Google Scholar]
  22. Leitsch D, Mbouaka AL, Kohsler M, Muller N, Walochnik J. 2021. An unusual thioredoxin system in the facultative parasite Acanthamoeba castellanii. Cellular and Molecular Life Sciences, 78(7), 3673–3689. [CrossRef] [PubMed] [Google Scholar]
  23. Lorenzo-Morales J, Khan NA, Walochnik J. 2015. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite, 22, 10. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Loufouma Mbouaka A, Leitsch D, Koehsler M, Walochnik J. 2021. Antimicrobial effect of auranofin against Acanthamoeba spp. International Journal of Antimicrobial Agents, 58, 106425. [CrossRef] [PubMed] [Google Scholar]
  25. Ma H, Wang M, Gai Y, Fu H, Zhang B, Ruan R, Chung KR, Li H. 2018. Thioredoxin and glutaredoxin systems required for oxidative stress resistance, fungicide sensitivity, and virulence of Alternaria alternata. Applied and Environmental Microbiology, 84(14), e00086-18. [CrossRef] [PubMed] [Google Scholar]
  26. Marciano-Cabral F, Cabral G. 2003. Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews, 16(2), 273–307. [CrossRef] [PubMed] [Google Scholar]
  27. Michan C, Pueyo C. 2009. Growth phase-dependent variations in transcript profiles for thioredoxin- and glutathione-dependent redox systems followed by budding and hyphal Candida albicans cultures. FEMS Yeast Research, 9(7), 1078–1090. [CrossRef] [PubMed] [Google Scholar]
  28. Miller CG, Holmgren A, Arner ESJ, Schmidt EE. 2018. NADPH-dependent and -independent disulfide reductase systems. Free Radical Biology and Medicine, 127, 248–261. [CrossRef] [Google Scholar]
  29. Missall TA, Lodge JK. 2005. Thioredoxin reductase is essential for viability in the fungal pathogen Cryptococcus neoformans. Eukaryotic Cell, 4(2), 487–489. [CrossRef] [PubMed] [Google Scholar]
  30. Motavallihaghi S, Khodadadi I, Goudarzi F, Afshar S, Shahbazi AE, Maghsood AH. 2022. The role of Acanthamoeba castellanii (T4 genotype) antioxidant enzymes in parasite survival under H2O2-induced oxidative stress. Parasitology International, 87, 102523. [CrossRef] [PubMed] [Google Scholar]
  31. Munhoz DC, Netto LE. 2004. Cytosolic thioredoxin peroxidase I and II are important defenses of yeast against organic hydroperoxide insult: catalases and peroxiredoxins cooperate in the decomposition of H2O2 by yeast. Journal of Biological Chemistry, 279(34), 35219–35227. [CrossRef] [Google Scholar]
  32. Ouyang X, Tran QT, Goodwin S, Wible RS, Sutter CH, Sutter TR. 2011. Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses. Free Radical Biology and Medicine, 50(1), 1–13. [CrossRef] [Google Scholar]
  33. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45. [Google Scholar]
  34. Qvarnstrom Y, Visvesvara GS, Sriram R, da Silva AJ. 2006. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. Journal of Clinical Microbiology, 44(10), 3589–3595. [CrossRef] [PubMed] [Google Scholar]
  35. Reczek CR, Chandel NS. 2015. ROS-dependent signal transduction. Current Opinion in Cell Biology, 33, 8–13. [CrossRef] [PubMed] [Google Scholar]
  36. Roder C, Thomson MJ. 2015. Auranofin: repurposing an old drug for a golden new age. Drugs in R&D, 15(1), 13–20. [CrossRef] [PubMed] [Google Scholar]
  37. Sannella AR, Casini A, Gabbiani C, Messori L, Bilia AR, Vincieri FF, Majori G, Severini C. 2008. New uses for old drugs. Auranofin, a clinically established antiarthritic metallodrug, exhibits potent antimalarial effects in vitro: mechanistic and pharmacological implications. FEBS Letters, 582(6), 844–847. [CrossRef] [PubMed] [Google Scholar]
  38. Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJJ. 2017. Microbial antioxidant defense enzymes. Microbial Pathogenesis, 110, 56–65. [CrossRef] [PubMed] [Google Scholar]
  39. Tejman-Yarden N, Miyamoto Y, Leitsch D, Santini J, Debnath A, Gut J, McKerrow JH, Reed SL, Eckmann L. 2013. A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Antimicrobial Agents and Chemotherapy, 57(5), 2029–2035. [CrossRef] [PubMed] [Google Scholar]
  40. Vivancos AP, Jara M, Zuin A, Sanso M, Hidalgo E. 2006. Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Molecular Genetics and Genomics, 276(6), 495–502. [CrossRef] [PubMed] [Google Scholar]
  41. Woyda-Ploszczyca A, Koziel A, Antos-Krzeminska N, Jarmuszkiewicz W. 2011. Impact of oxidative stress on Acanthamoeba castellanii mitochondrial bioenergetics depends on cell growth stage. Journal of Bioenergetics and Biomembranes, 43(3), 217–225. [CrossRef] [PubMed] [Google Scholar]
  42. Zhang H, Du Y, Zhang X, Lu J, Holmgren A. 2014. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxidants & Redox Signaling, 21(5), 669–681. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.