Open Access
Research Article
Issue
Parasite
Volume 29, 2022
Article Number 14
Number of page(s) 14
DOI https://doi.org/10.1051/parasite/2022015
Published online 09 March 2022
  1. Albisetti A, Florimond C, Landrein N, Vidilaseris K, Eggenspieler M, Lesigang J, Dong G, Robinson DR, Bonhivers M. 2017. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei. PLOS Pathogens, 13, e1006710. [CrossRef] [PubMed] [Google Scholar]
  2. Allen CL, Goulding D, Field MC. 2003. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO Journal, 22, 4991–5002. [CrossRef] [Google Scholar]
  3. Alsford S, Horn D. 2008. Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Molecular and Biochemical Parasitology, 161, 76–79. [CrossRef] [PubMed] [Google Scholar]
  4. Alvarado ME, Rubiano C, Calvo E, Gómez V, Wasserman M. 2017. Experimental and bioinformatic characterization of CaBP2933 an EF-Hand protein of Giardia intestinalis. Molecular and Biochemical Parasitology, 214, 65–68. [CrossRef] [PubMed] [Google Scholar]
  5. Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko EY, Bażant W, Belnap R, Blevins AS, Böhme U, Brestelli J, Brunk BP, Caddick M, Callan D, Campbell L, Christensen MB, Christophides GK, Crouch K, Davis K, DeBarry J, Doherty R, Duan Y, Dunn M, Falke D, Fisher S, Flicek P, Fox B, Gajria B, Giraldo-Calderón GI, Harb OS, Harper E, Hertz-Fowler C, Hickman MJ, Howington C, Hu S, Humphrey J, Iodice J, Jones A, Judkins J, Kelly SA, Kissinger JC, Kwon DK, Lamoureux K, Lawson D, Li W, Lies K, Lodha D, Long J, MacCallum RM, Maslen G, McDowell MA, Nabrzyski J, Roos DS, Rund SSC, Schulman SW, Shanmugasundram A, Sitnik V, Spruill D, Starns D, Stoeckert CJ Jr, Tomko SS, Wang H, Warrenfeltz S, Wieck R, Wilkinson PA, Xu L, Zheng J. 2022. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Research, 50, D898–D911. [CrossRef] [PubMed] [Google Scholar]
  6. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ, Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H. 2010. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 38, D457–D462. [CrossRef] [PubMed] [Google Scholar]
  7. Bananis E, Nath S, Gordon K, Satir P, Stockert RJ, Murray JW, Wolkoff AW. 2004. Microtubule-dependent movement of late endocytic vesicles in vitro: Requirements for dynein and kinesin. Molecular Biology of the Cell, 15, 3688–3697. [CrossRef] [PubMed] [Google Scholar]
  8. Bertiaux E, Morga B, Blisnick T, Rotureau B, Bastin P. 2018. A grow-and-lock model for the control of flagellum length in trypanosomes. Current Biology, 28, 3802–3814.e3. [CrossRef] [PubMed] [Google Scholar]
  9. Bonhivers M, Nowacki S, Landrein N, Robinson DR. 2008. Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLOS Biology, 6, e105. [CrossRef] [PubMed] [Google Scholar]
  10. Bringaud F, Robinson DR, Barradeau S, Biteau N, Baltz D, Baltz T. 2000. Characterization and disruption of a new Trypanosoma brucei repetitive flagellum protein, using double-stranded RNA inhibition. Molecular and Biochemical Parasitology, 111, 283–297. [CrossRef] [PubMed] [Google Scholar]
  11. Broster Reix CE, Florimond C, Cayrel A, Mailhé A, Agnero-Rigot C, Landrein N, Dacheux D, Havlicek K, Bonhivers M, Morriswood B, Robinson DR. 2021. Bhalin, an essential cytoskeleton-associated protein of Trypanosoma brucei linking TbBILBO1 of the flagellar pocket collar with the hook complex. Microorganisms, 9, 2334. [CrossRef] [PubMed] [Google Scholar]
  12. Chan KY, Ersfeld K. 2010. The role of the Kinesin-13 family protein TbKif13-2 in flagellar length control of Trypanosoma brucei. Molecular and Biochemical Parasitology, 174, 137–140. [CrossRef] [PubMed] [Google Scholar]
  13. Chan KY, Matthews KR, Ersfeld K. 2010. Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei. PLOS Pathogens, 6, e1001050. [CrossRef] [PubMed] [Google Scholar]
  14. Chen K, Nam W, Epureanu BI. 2020. Collective intracellular cargo transport by multiple kinesins on multiple microtubules. Physical Review E, 101, 052413. [CrossRef] [PubMed] [Google Scholar]
  15. Clayton CE, Estévez AM, Hartmann C, Alibu VP, Field M, Horn D. 2005. Down-regulating gene expression by RNA interference in Trypanosoma brucei, in RNA Silencing: Methods and Protocols. Carmichael GG, Editor. Humana Press: Totowa, NJ. p. 39–59. [Google Scholar]
  16. Crozier TWM, Tinti M, Wheeler RJ, Ly T, Ferguson MAJ, Lamond AI. 2018. Proteomic analysis of the cell cycle of procylic form Trypanosoma brucei. Molecular & Cellular Proteomics, 17, 1184–1195. [CrossRef] [PubMed] [Google Scholar]
  17. Dacheux D, Landrein N, Thonnus M, Gilbert G, Sahin A, Wodrich H, Robinson DR, Bonhivers M. 2012. A MAP6-related protein is present in protozoa and is involved in flagellum motility. PLoS One, 7, e31344. [CrossRef] [PubMed] [Google Scholar]
  18. Dean S, Sunter JD, Wheeler RJ. 2017. TrypTag.org: A trypanosome genome-wide protein localisation resource. Trends in Parasitology, 33, 80–82. [CrossRef] [PubMed] [Google Scholar]
  19. Delevoye C, Miserey-Lenkei S, Montagnac G, Gilles-Marsens F, Paul-Gilloteaux P, Giordano F, Waharte F, Marks MS, Goud B, Raposo G. 2014. Recycling endosome tubule morphogenesis from sorting endosomes requires the kinesin motor KIF13A. Cell Reports, 6, 445–454. [CrossRef] [PubMed] [Google Scholar]
  20. Douglas RL, Haltiwanger BM, Albisetti A, Wu H, Jeng RL, Mancuso J, Cande WZ, Welch MD. 2020. Trypanosomes have divergent kinesin-2 proteins that function differentially in flagellum biosynthesis and cell viability. Journal of Cell Science, 133, jcs129213. [CrossRef] [PubMed] [Google Scholar]
  21. Florimond C, Sahin A, Vidilaseris K, Dong G, Landrein N, Dacheux D, Albisetti A, Byard EH, Bonhivers M, Robinson DR. 2015. BILBO1 is a scaffold protein of the flagellar pocket collar in the pathogen Trypanosoma brucei. PLoS Pathogens, 11, e1004844. [CrossRef] [PubMed] [Google Scholar]
  22. Gadelha C, Rothery S, Morphew M, McIntosh JR, Severs NJ, Gull K. 2009. Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 106, 17425–17430. [CrossRef] [PubMed] [Google Scholar]
  23. Hall BS, Smith E, Langer W, Jacobs LA, Goulding D, Field MC. 2005. Developmental variation in Rab11-dependent trafficking in Trypanosoma brucei. Eukaryotic Cell, 4, 971–980. [CrossRef] [PubMed] [Google Scholar]
  24. Hirokawa N, Noda Y, Tanaka Y, Niwa S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nature Reviews Molecular Cell Biology, 10, 682–696. [CrossRef] [PubMed] [Google Scholar]
  25. Hirokawa N, Takemura R. 2004. Kinesin superfamily proteins and their various functions and dynamics. Experimental Cell Research, 301, 50–59. [CrossRef] [PubMed] [Google Scholar]
  26. Ho HH, He CY, de Graffenried CL, Murrells LJ, Warren G. 2006. Ordered assembly of the duplicating Golgi in Trypanosoma brucei. Proceedings of the National Academy of Sciences of the United States of America, 103, 7676. [CrossRef] [PubMed] [Google Scholar]
  27. Hu L, Hu H, Li Z. 2012. A kinetoplastid-specific kinesin is required for cytokinesis and for maintenance of cell morphology in Trypanosoma brucei. Molecular Microbiology, 83, 565–578. [CrossRef] [PubMed] [Google Scholar]
  28. Isch C, Majneri P, Landrein N, Pivovarova Y, Lesigang J, Lauruol F, Robinson DR, Dong G, Bonhivers M. 2021. Structural and functional studies of the first tripartite protein complex at the Trypanosoma brucei flagellar pocket collar. PLOS Pathogens, 17, e1009329. [CrossRef] [PubMed] [Google Scholar]
  29. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858. [CrossRef] [PubMed] [Google Scholar]
  30. Kilmartin JV. 2014. Lessons from yeast: the spindle pole body and the centrosome. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369, 20130456. [CrossRef] [PubMed] [Google Scholar]
  31. Link F, Borges AR, Jones NG, Engstler M. 2021. To the surface and back: exo- and endocytic pathways in Trypanosoma brucei. Frontiers in Cell and Developmental Biology, 9, 2034. [CrossRef] [Google Scholar]
  32. McKean PG, Gull K. 2010. The flagellar pocket of trypanosomatids: A critical feature for cell morphogenesis and pathogenicity, in Structures and Organelles in Pathogenic Protists. de Souza W, Editor. Springer: Berlin, Heidelberg. p. 87–113. [CrossRef] [Google Scholar]
  33. Moores CA, Milligan RA. 2006. Lucky 13 – microtubule depolymerisation by kinesin-13 motors. Journal of Cell Science, 119, 3905–3913. [CrossRef] [PubMed] [Google Scholar]
  34. Morriswood B. 2015. Form, fabric, and function of a flagellum-associated cytoskeletal structure. Cells, 4, 726–747. [CrossRef] [PubMed] [Google Scholar]
  35. Morriswood B, Schmidt K. 2015. A MORN repeat protein facilitates protein entry into the flagellar pocket of Trypanosoma brucei. Eukaryotic Cell, 14, 1081–1093. [CrossRef] [PubMed] [Google Scholar]
  36. Perdomo D, Bonhivers M, Robinson DR. 2016. The trypanosome flagellar pocket collar and its ring forming protein – TbBILBO1. Cells, 5, 9. [CrossRef] [Google Scholar]
  37. Pradel LC, Bonhivers M, Landrein N, Robinson DR. 2006. NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei. Journal of Cell Science, 119, 1852–1863. [CrossRef] [PubMed] [Google Scholar]
  38. Robinson DR, Sherwin T, Ploubidou A, Byard EH, Gull K. 1995. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. Journal of Cell Biology, 128, 1163–1172. [CrossRef] [PubMed] [Google Scholar]
  39. Sack S, Muller J, Marx A, Thormahlen M, Mandelkow EM. 1997. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry, 36, 16155–16165. [CrossRef] [PubMed] [Google Scholar]
  40. Varga V, Moreira-Leite F, Portman N, Gull K. 2017. Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proceedings of the National Academy of Sciences of the United States of America, 114, E6546–E6555. [PubMed] [Google Scholar]
  41. Vidilaseris K, Morriswood B, Kontaxis G, Dong G. 2014. Structure of the TbBILBO1 protein N-terminal domain from Trypanosoma brucei reveals an essential requirement for a conserved surface patch. Journal of Biological Chemistry, 289, 3724–3735. [CrossRef] [Google Scholar]
  42. Vidilaseris K, Shimanovskaya E, Esson HJ, Morriswood B, Dong G. 2014. Assembly mechanism of Trypanosoma brucei BILBO1, a multidomain cytoskeletal protein. Journal of Biological Chemistry, 289, 23870–23881. [CrossRef] [Google Scholar]
  43. Wei Y, Hu H, Lun ZR, Li Z. 2013. The cooperative roles of two kinetoplastid-specific kinesins in cytokinesis and in maintaining cell morphology in bloodstream trypanosomes. PLoS One, 8, e73869. [CrossRef] [PubMed] [Google Scholar]
  44. Wickstead B, Gull K. 2006. A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. Molecular Biology of the Cell, 17, 1734–1743. [CrossRef] [PubMed] [Google Scholar]
  45. Wickstead B, Gull K, Richards TA. 2010. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evolutionary Biology, 10, 1–12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.