Open Access
Research Article
Issue
Parasite
Volume 29, 2022
Article Number 18
Number of page(s) 7
DOI https://doi.org/10.1051/parasite/2022019
Published online 29 March 2022
  1. Agnihotri J, Singh Sobhna, Bigonia Papiya. 2013. Formal chemical stability analysis and solubility analysis of artesunate and hydroxychloroquinine for development of parenteral dosage form. Journal of Pharmacy Research, 6, 117–122. [CrossRef] [Google Scholar]
  2. Atemnkeng MA, De Cock K, Plaizier-Vercammen J. 2007. Quality control of active ingredients in artemisinin-derivative antimalarials within Kenya and DR Congo. Tropical Medicine & International Health, 12, 68–74. [PubMed] [Google Scholar]
  3. Bacon DJ, Latour C, Lucas C, Colina O, Ringwald P, Picot S. 2007. Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrobial Agents and Chemotherapy, 51, 1172–1178. [CrossRef] [PubMed] [Google Scholar]
  4. Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana S-I, Yamauchi M, Opio W, Emoto S, Anywar DA, Kimura E, Palacpac NMQ, Odongo-Aginya EI, Ogwang M, Horii T, Mita T. 2021. Evidence of artemisinin-resistant malaria in Africa. New England Journal of Medicine, 385, 1163–1171. [CrossRef] [PubMed] [Google Scholar]
  5. Bienvenu A-L, Djimdé A, Picot S. 2019. Antimalarial stewardship programs are urgently needed for malaria elimination: a perspective. Parasite, 26, 16. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Bienvenu A-L, Ferrandiz J, Kaiser K, Latour C, Picot S. 2008. Artesunate–erythropoietin combination for murine cerebral malaria treatment. Acta Tropica, 106, 104–108. [CrossRef] [PubMed] [Google Scholar]
  7. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegardh N, Socheat D, White NJ. 2009. Artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine, 361, 455–467. [CrossRef] [PubMed] [Google Scholar]
  8. Geditz MCK, Heinkele G, Ahmed A, Kremsner PG, Kerb R, Schwab M, Hofmann U. 2014. LC-MS/MS method for the simultaneous quantification of artesunate and its metabolites dihydroartemisinin and dihydroartemisinin glucuronide in human plasma. Analytical and Bioanalytical Chemistry, 406, 4299–4308. [CrossRef] [PubMed] [Google Scholar]
  9. Gonçalves VSS, Matias AA, Poejo J, Serra AT, Duarte CMM. 2016. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. International Journal of Pharmaceutics, 515, 1–10. [CrossRef] [PubMed] [Google Scholar]
  10. Guo S, Kyaw MP, He L, Min M, Ning X, Zhang W, Wang B, Cui L. 2017. Quality testing of artemisinin-based antimalarial drugs in Myanmar. American Journal of Tropical Medicine and Hygiene, 97, 1198–1203. [CrossRef] [PubMed] [Google Scholar]
  11. Haynes RK, Chan H-W, Lung C-M, Ng N-C, Wong H-N, Shek LY, Williams ID, Cartwright A, Gomes MF. 2007. Artesunate and dihydroartemisinin (DHA): Unusual decomposition products formed under mild conditions and comments on the fitness of DHA as an antimalarial drug. ChemMedChem, 2, 1448–1463. [CrossRef] [PubMed] [Google Scholar]
  12. Kadhum WR, Hada T, Hijikuro I, Todo H, Sugibayashi K. 2017. Development and optimization of orally and topically applied liquid crystal drug formulations. Journal of Oleo Science, 66, 939–950. [CrossRef] [PubMed] [Google Scholar]
  13. Kalyankar TM, Kakade RB, Attar MS, Kamble AR. 2013. Simultaneous spectrophotometric estimation of artesunate and mefloquine. Journal of Chemistry, 2013, 1–5. [CrossRef] [Google Scholar]
  14. Kaur H, Allan EL, Mamadu I, Hall Z, Green MD, Swamidos I, Dwivedi P, Culzoni MJ, Fernandez FM, Garcia G, Hergott D, Monti F. 2017. Prevalence of substandard and falsified artemisinin-based combination antimalarial medicines on Bioko Island, Equatorial Guinea. BMJ Global Health, 2, e000409. [CrossRef] [PubMed] [Google Scholar]
  15. Kitisripanya T, Sermpradit W, Sakamoto S, Tanaka H, Putalun W. 2020. An estimated quantitative lateral flow immunoassay for determination of artesunate using monoclonal antibody. Biomedical Chromatography, 34. e4718. [CrossRef] [PubMed] [Google Scholar]
  16. Li P, Zhao L. 2007. Developing early formulations: Practice and perspective. International Journal of Pharmaceutics, 341, 1–19. [CrossRef] [PubMed] [Google Scholar]
  17. Mitsui Y. 2016. Development of a simple and specific direct competitive ELISA for the determination of artesunate using an anti-artesunate polyclonal antiserum. Tropical Medicine and Health, 44, 37. [CrossRef] [PubMed] [Google Scholar]
  18. Newton P, Suputtamongkol Y, Teja-Isavadharm P, Pukrittayakamee S, Navaratnam V, Bates I, White N. 2000. Antimalarial bioavailability and disposition of artesunate in acute falciparum malaria. Antimicrobial Agents and Chemotherapy, 44, 972–977. [CrossRef] [PubMed] [Google Scholar]
  19. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. 2008. Evidence of artemisinin-resistant malaria in Western Cambodia. New England Journal of Medicine, 359, 2619–2620. [Google Scholar]
  20. Ouji M, Augereau J-M, Paloque L, Benoit-Vical F. 2018. Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of Damocles in the path toward malaria elimination. Parasite, 25, 24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  21. Qian J, He Q, Liu L, Wang M, Wang B, Cui L. 2020. Rapid quantification of artemisinin derivatives in antimalarial drugs with dipstick immunoassays. Journal of Pharmaceutical and Biomedical Analysis, 191, 113605. [CrossRef] [PubMed] [Google Scholar]
  22. Saeed MA, Ansari MT, Ch BA, Zaman M. 2020. RP-HPLC Method for the determination and quantification of artesunate. Journal of Chromatographic Science, 58, 695–699. [CrossRef] [PubMed] [Google Scholar]
  23. Sreevidya T, Narayana B. 2009. A simple and rapid spectrophotometric method for the determination of artesunate in pharmaceuticals. Eurasian Journal of Analytical Chemistry, 4, 119–126. [Google Scholar]
  24. Teja-Isavadharm P, Nosten F, Kyle DE, Luxemburger C, Kuile FT, Peggins JO, Brewer TG, White NJ. 1996. Comparative bioavailability of oral, rectal, and intramuscular artemether in healthy subjects: use of simultaneous measurement by high performance liquid chromatography and bioassay. British Journal of Clinical Pharmacology, 42, 599–604. [CrossRef] [PubMed] [Google Scholar]
  25. Teja-Isavadharm P, Peggins JO, Brewer TG, White NJ, Webster HK, Kyle DE. 2004. Plasmodium falciparum-based bioassay for measurement of artemisinin derivatives in plasma or serum. Antimicrobial Agents and Chemotherapy, 48, 954–960. [CrossRef] [PubMed] [Google Scholar]
  26. Teja-Isavadharm P, Siriyanonda D, Siripokasupkul R, Apinan R, Chanarat N, Lim A, Wannaying S, Saunders D, Fukuda MM, Miller RS, Weina PJ, Meléndez V. 2010. A simplified liquid chromatography-mass spectrometry assay for artesunate and dihydroartemisinin, its metabolite, in human plasma. Molecules, 15, 8747–8768. [CrossRef] [PubMed] [Google Scholar]
  27. Trager W, Jensen JB. 1976. Human malaria parasites in continuous culture. Science, 193, 673–675. [CrossRef] [PubMed] [Google Scholar]
  28. Traore K, Lavoignat A, Bonnot G, Sow F, Bess GC, Chavant M, Gay F, Doumbo O, Picot S. 2015. Drying anti-malarial drugs in vitro tests to outsource SYBR green assays. Malaria Journal, 14, 90. [CrossRef] [PubMed] [Google Scholar]
  29. Uwimana A, Umulisa N, Venkatesan M, Svigel SS, Zhou Z, Munyaneza T, Habimana RM, Rucogoza A, Moriarty LF, Sandford R, Piercefield E, Goldman I, Ezema B, Talundzic E, Pacheco MA, Escalante AA, Ngamije D, Mangala J-LN, Kabera M, Munguti K, Murindahabi M, Brieger W, Musanabaganwa C, Mutesa L, Udhayakumar V, Mbituyumuremyi A, Halsey ES, Lucchi NW. 2021. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infectious Diseases, 21, 1120–1128. [CrossRef] [Google Scholar]
  30. Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, Lim P, Mao S, Sopha C, Sam B, Anderson JM, Duong S, Chuor CM, Taylor WRJ, Suon S, Mercereau-Puijalon O, Fairhurst RM, Menard D. 2013. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infectious Diseases, 13, 1043–1049. [CrossRef] [Google Scholar]
  31. World Health Organization. 2021. World malaria report 2021. Geneva: World Health Organization. [Google Scholar]
  32. Zhang J, Li N, Siddiqui FA, Xu S, Geng J, Zhang J, He X, Zhao L, Pi L, Zhang Y, Li C, Chen X, Wu Y, Miao J, Cao Y, Cui L, Yang Z. 2019. In vitro susceptibility of Plasmodium falciparum isolates from the China-Myanmar border area to artemisinins and correlation with K13 mutations. International Journal for Parasitology: Drugs and Drug Resistance, 10, 20–27. [CrossRef] [Google Scholar]
  33. 2021. GraphPad Prism. San Diego, CA, USA: GraphPad Software. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.