Open Access
Research Article
Issue
Parasite
Volume 28, 2021
Article Number 65
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2021064
Published online 14 September 2021
  1. Aguirre AAR, Lobo FP, Cunha RC, Garcia MV, Andreotti R. 2016. Design of the ATAQ peptide and its evaluation as an immunogen to develop a Rhipicephalus vaccine. Veterinary Parasitology, 221, 30–38. [CrossRef] [PubMed] [Google Scholar]
  2. Almazán C, Lagunes R, Villar M, Canales M, Rosario-Cruz R, Jongejan F, de la Fuente J. 2010. Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitology Research, 106, 471–479. [CrossRef] [PubMed] [Google Scholar]
  3. Almazán C, Fourniol L, Rakotobe S, Šimo L, Bornères J, Cote M, Peltier S, Maye J, Versillé N, Richardson J, Bonnet SI. 2020. Failed disruption of tick feeding, viability, and molting after immunization of mice and sheep with recombinant Ixodes ricinus salivary proteins IrSPI and IrLip1. Vaccines, 8, 475. [CrossRef] [Google Scholar]
  4. Almazán C, Šimo L, Fourniol L, Rakotobe S, Borneres J, Cote M, Peltier S, Mayé J, Versillé N, Richardson J, Bonnet SI. 2020. Multiple antigenic peptide-based vaccines targeting Ixodes ricinus neuropeptides induce a specific antibody response but do not impact tick infestation. Pathogens, 9, 900. [CrossRef] [Google Scholar]
  5. Andreotti R, Cunha RC, Soares MA, Guerrero FD, Leite FPL, de León AAP. 2012. Protective immunity against tick infestation in cattle vaccinated with recombinant trypsin inhibitor of Rhipicephalus microplus. Vaccine, 30, 6678–6685. [CrossRef] [PubMed] [Google Scholar]
  6. Armendáriz GI. 2003. Report of a case of multiple resistance to ixodicides on Boophilus microplus Canestrini (Acari: Ixodidae) in Tamaulipas, México. Veterinaria México, 34, 397–401. [Google Scholar]
  7. Blecha IMZ, Csordas BG, Aguirre AAR, Cunha RC, Garcia MV, Andreotti R. 2018. Analysis of Bm86 conserved epitopes: Is a global vaccine against cattle tick Rhipicephalus microplus possible? Brazilian Journal of Veterinary Parasitology, 27, 267–279. [Google Scholar]
  8. Bhowmick B, Han Q. 2020. Understanding tick biology and its implications in anti-tick and transmission blocking vaccines against tick-borne pathogens. Frontiers in Veterinary Science, 7, 319. [CrossRef] [PubMed] [Google Scholar]
  9. Cunha RC, de León AAP, Leite FPL, Pinto LS, dos Santos JAG, Andreotti R. 2012. Bovine immunoprotection against Rhipicephalus (Boophilus) microplus with recombinant Bm86-Campo Grande antigen. Revista Brasileira de Parasitologia Veterinária, 21, 254–262. [CrossRef] [Google Scholar]
  10. Cunha RC, Andreotti R, Garcia MV, Aguirre AAR, Leitáo A. 2013. Calculation of the efficacy of vaccines against tick infestations on cattle. Revista Brasileira de Parasitologia Veterinária, 22, 571–578. [CrossRef] [Google Scholar]
  11. De la Fuente J, Rodríguez M, Montero C, Redondo M, García-García JC, Méndez L, Serrano E, Valdés M, Enríquez A, Canales M, Ramos E, Boué O, Machado H, Lleonart R. 1999. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac™. Genetic Analysis: Biomolecular Engineering, 15, 143–148. [CrossRef] [Google Scholar]
  12. De la Fuente J, Canales M, Kocan KM. 2006. The importance of protein glycosylation in development of novel tick vaccine strategies. Parasite Immunology, 28, 687–688. [CrossRef] [PubMed] [Google Scholar]
  13. Doytchinova IA, Flower DR. 2007. VaxiJen: a server for prediction of protective antigens, tumor antigens and subunit vaccines. BMC Bioinformatics, 8, 4. [CrossRef] [PubMed] [Google Scholar]
  14. Doytchinova IA, Flower DR. 2007. Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine, 25, 856–866. [CrossRef] [PubMed] [Google Scholar]
  15. Doytchinova IA, Flower DR. 2008. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine Journal, 1, 22–26. [CrossRef] [Google Scholar]
  16. Fernández-Salas A, Rodríguez-Vivas RI, Alonso-Díaz MA. 2012. First report of a Rhipicephalus microplus tick population multi-resistant to acaricides and ivermectin in the Mexican tropics. Veterinary Parasitology, 183, 338–342. [CrossRef] [PubMed] [Google Scholar]
  17. Flores-Fernández JM, Gutiérrez-Ortega A, Padilla-Camberos E, Rosario-Cruz R, Hernández-Gutiérrez R, Martínez-Velázquez M. 2014. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasite, 21, 43. [PubMed] [Google Scholar]
  18. Flores FJM. 2015. Caracterización molecular de secuencias ESTs codificantes de proteínas de membrana con potencial inmunoprotector en la garrapata del ganado bovino Rhipicephalus (Boophilus) microplus. Doctoral thesis. Guadalajara, Jalisco, México: CIATEJ, AC. p. 126. http://ciatej.repositorioinstitucional.mx/jspui/handle/1023/101. Accessed December 7, 2020. [Google Scholar]
  19. García-García JC, González IL, González DM, Valdés M, Méndez L, Lamberti J, D’Agostino B, Citroni D, Fragoso H, Ortiz M, Rodríguez M, de la Fuente J. 1999. Sequence variations in the Boophilus microplus Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen. Experimental and Applied Acarology, 23, 883–895. [CrossRef] [Google Scholar]
  20. Gassel M, Wolf C, Noack S, Williams H, Ilg T. 2014. The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity. Insect Biochemistry and Molecular Biology, 45, 111–124. [CrossRef] [PubMed] [Google Scholar]
  21. Guerrero FD, Miller RJ, Pérez de León AA. 2012. Cattle tick vaccines: many candidate antigens, but will a commercially viable product emerge? International Journal for Parasitology, 42, 421–427. [CrossRef] [PubMed] [Google Scholar]
  22. Hille B. 2001. Ionic channels of excitable membranes. Sunderland, Massachusetts, USA: Sinauer Associates. 814 p. [Google Scholar]
  23. Hope M, Jiang X, Gough J, Cadogan L, Josh P, Jonsson N, Willadsen P. 2010. Experimental vaccination of sheep and cattle against tick infestation using recombinant 5’-nucleotidase. Parasite Immunology, 32, 135–142. [CrossRef] [PubMed] [Google Scholar]
  24. Jespersen MC, Peters B, Nielsen M, Marcatili P. 2017. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45, W24–W29. [CrossRef] [PubMed] [Google Scholar]
  25. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305, 567–580. [CrossRef] [PubMed] [Google Scholar]
  26. Maritz-Olivier C, van Zyl W, Stutzer C. 2012. A systematic, functional genomics, and reverse vaccinology approach to the identification of vaccine candidates in the cattle tick, Rhipicephalus microplus. Ticks and Tick-borne Diseases, 3, 179–187. [CrossRef] [PubMed] [Google Scholar]
  27. Martins JR, Evans DE, Ceresér VH, Corrêa BL. 2002. Partial strategic tick control within a herd of European breed cattle in the state of Rio Grande do Sul, southern Brazil. Experimental and Applied Acarology, 27, 241–251. [CrossRef] [Google Scholar]
  28. Mertens N, Remaut E, Fiers W. 1995. Tight transcriptional control mechanism ensures stable high-level expression from T7 promoter-based expression plasmids. Nature Biotechnology, 13, 175–179. [CrossRef] [Google Scholar]
  29. Miller RJ, Davey RB, George JE. 2007. First report of permethrin-resistant Boophilus microplus (Acari: Ixodidae) collected within the United States. Journal of Medical Entomology, 44, 308–315. [CrossRef] [PubMed] [Google Scholar]
  30. JrC Ndawula, Tabor AE. 2020. Cocktail anti-tick vaccines: the unforeseen constraints and approaches toward enhanced efficacies. Vaccines, 8, 457. [CrossRef] [Google Scholar]
  31. Parizi LF, Githaka NW, Logullo C, Konnai S, Masuda A, Ohashi K, da Silva VI Jr. 2012. The quest for a universal vaccine against ticks: cross-immunity insights. Veterinary Journal, 194, 158–165. [CrossRef] [Google Scholar]
  32. Perez-Cogollo LC, Rodriguez-Vivas RI, Ramirez-Cruz GT, Miller RJ. 2010. First report of the cattle tick Rhipicephalus microplus resistant to ivermectin in Mexico. Veterinary Parasitology, 168, 165–169. [CrossRef] [PubMed] [Google Scholar]
  33. Pérez de León AA, Strickman DA, Knowles DP, Fish D, Thacker E, Fuente J, Krause PJ, Wikel SK, Miller RS, Wagner GG, Almazán C, Hillman R, Messenger MT, Ugstad PO, Duhaime RA, Teel PD, Ortega-Santos A, Hewitt DG, Bowers EJ, Bent SJ, Cochran MH, McElwain TF, Scoles GA, Suarez CE, Davey R, Freeman JMH, Lohmeyer K, Li AY, Guerrero FD, Kammlah DM, Phillips P, Pound JM. 2010. One Health approach to identify research needs in bovine and human babesioses; workshop report. Parasites & Vectors, 3, 36. [CrossRef] [PubMed] [Google Scholar]
  34. Pérez-Sánchez R, Manzano-Román R, Obolo-Mvoulouga P, Oleaga A. 2019. In silico selection of functionally important proteins from the mialome of Ornithodoros erraticus ticks and assessment of their protective efficacy as vaccine targets. Parasites & Vectors, 12, 508. [CrossRef] [PubMed] [Google Scholar]
  35. Richards SA, Stutzer C, Bosman AM, Maritz-Olivier C. 2015. Transmembrane proteins-mining the cattle tick transcriptome. Ticks and Tick-Borne Diseases, 6, 695–710. [CrossRef] [PubMed] [Google Scholar]
  36. Schetters T, Bishop R, Crampton M, Kopáček P, Lew-Tabor A, Maritz-Olivier C, Miller R, Mosqueda J, Patarroyo J, Rodriguez-Valle M, Scoles GA, de la Fuente J. 2016. Cattle tick vaccine researchers join forces in CATVAC. Parasites & Vectors, 9, 105. [CrossRef] [PubMed] [Google Scholar]
  37. Sossai S, Peconick AP, Sales-Junior PA, Marcelino FC, Vargas MI, Neves ES, Patarroyo JH. 2005. Polymorphism of the Bm86 gene in South American strains of the cattle tick Boophilus microplus. Experimental and Applied Acarology, 37, 199–214. [CrossRef] [Google Scholar]
  38. Spyropoulos IC, Liakopoulos TD, Bagos PG, Hamodrakas SJ. 2004. TMRPres2D: high quality visual representation of transmembrane protein models. Bioinformatics, 20, 3258–3260. [CrossRef] [PubMed] [Google Scholar]
  39. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology, 185, 60–89. [CrossRef] [PubMed] [Google Scholar]
  40. Tellam RL, Smith D, Kemp DH, Willadsen P. 1992. Vaccination against ticks, in Animal Parasite Control Utilizing Biotechnology, Yong WK, Editor. CRC Press: Boca Raton. 303 p. [Google Scholar]
  41. Thompson AJ, Lester HA, Lummis SCR. 2010. The structural basis of function in Cys-loop receptors. Quarterly Reviews of Biophysics, 43(4), 449–499. [CrossRef] [PubMed] [Google Scholar]
  42. Vethanayagam JGG, Flower AM. 2005. Decreased gene expression from T7 promoters may be due to impaired production of active T7 RNA polymerase. Microbial Cell Factories, 4, 3. [CrossRef] [PubMed] [Google Scholar]
  43. Zaharieva N, Dimitrov I, Flower DR, Doytchinova I. 2017. Immunogenicity prediction by VaxiJen: a ten year overview. Journal of Proteomics & Bioinformatics, 10, 298–310. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.