Open Access
Volume 28, 2021
Article Number 83
Number of page(s) 9
Published online 15 December 2021
  1. Alivernini S, Gremese E, McSharry C, Tolusso B, Ferraccioli G, McInnes IB, Stolarska MK. 2018. MicroRNA-155-at the critical interface of innate and adaptive immunity in arthritis. Frontiers in Immunology, 8, 1932. [CrossRef] [PubMed] [Google Scholar]
  2. Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233. [CrossRef] [PubMed] [Google Scholar]
  3. Baumjohann D, Ansel KM. 2013. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nature Reviews Immunology, 13, 666–678. [CrossRef] [PubMed] [Google Scholar]
  4. Bhadra R, Gigley JP, Weiss LM, Khan IA. 2011. Control of Toxoplasma reactivation by rescue of dysfunctional CD8+ T-cell response via PD-1/PDL-1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 108, 9196–9201. [CrossRef] [PubMed] [Google Scholar]
  5. Biswas A, Bruder D, Wolf SA, Jeron A, Mack M, Heimesaat MM, Dunay IR. 2015. Ly6C(high) monocytes control cerebral toxoplasmosis. Journal of Immunology, 194, 3223–3235. [CrossRef] [PubMed] [Google Scholar]
  6. Cannella D, Brenier-Pinchart MP, Braun L, van Rooyen JM, Bougdour A, Bastien O, Behnke MS, Curt RS, Curt A, Saeij JP, Sibley LD, Pelloux H, Hakimi MA. 2014. miR-146a and miR-155 delineate a MicroRNA fingerprint associated with Toxoplasma persistence in the host brain. Cell Reports, 6, 928–937. [CrossRef] [PubMed] [Google Scholar]
  7. Dees S, Ganesan R, Singh S, Grewal IS. 2021. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. European Journal of Immunology, 51, 280–291. [CrossRef] [PubMed] [Google Scholar]
  8. Dudda JC, Salaun B, Ji Y, Palmer DC, Monnot GC, Merck E, Boudousquie C, Utzschneider DT, Escobar TM, Perret R, Muljo SA, Hebeisen M, Rufer N, Zehn D, Donda A, Restifo NP, Held W, Gattinoni L, Romero P. 2013. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity, 38, 742–753. [CrossRef] [PubMed] [Google Scholar]
  9. Dunay IR, Gajurel K, Dhakal R, Liesenfeld O, Montoya JG. 2018. Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice. Clinical Microbiology Reviews, 31, e00057-17. [CrossRef] [PubMed] [Google Scholar]
  10. Dupont CD, Christian DA, Hunter CA. 2012. Immune response and immunopathology during toxoplasmosis. Seminars in Immunopathology, 34, 793–813. [CrossRef] [PubMed] [Google Scholar]
  11. Elsheikha HM. 2008. Congenital toxoplasmosis: priorities for further health promotion action. Public Health, 122, 335–353. [CrossRef] [PubMed] [Google Scholar]
  12. Elsheikha HM, Marra CM, Zhu XQ. 2020. Epidemiology, pathophysiology, diagnosis, and management of cerebral toxoplasmosis. Clinical Microbiology Reviews, 34, e00115-19. [CrossRef] [PubMed] [Google Scholar]
  13. Gigley JP, Fox BA, Bzik DJ. 2009. Cell-mediated immunity to Toxoplasma gondii develops primarily by local Th1 host immune responses in the absence of parasite replication. Journal of Immunology, 182, 1069–1078. [CrossRef] [PubMed] [Google Scholar]
  14. Ham DW, Kim SG, Seo SH, Shin JH, Lee SH, Shin EH. 2021. Chronic Toxoplasma gondii infection alleviates experimental autoimmune encephalomyelitis by the immune regulation inducing reduction in IL-17A/Th17 via upregulation of SOCS3. Neurotherapeutics, 18, 430–447. [CrossRef] [PubMed] [Google Scholar]
  15. Im SJ, Konieczny BT, Hudson WH, Masopust D, Ahmed R. 2020. PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. Proceedings of the National Academy of Sciences of the United States of America, 117, 4292–4299. [CrossRef] [PubMed] [Google Scholar]
  16. Jha BK, Varikuti S, Seidler GR, Volpedo G, Satoskar AR, McGwire BS. 2020. MicroRNA-155 deficiency exacerbates Trypanosoma cruzi infection. Infection and Immunity, 88, e00948-19. [PubMed] [Google Scholar]
  17. Li J, Lee Y, Li Y, Jiang Y, Lu H, Zang W, Zhao X, Liu L, Chen Y, Tan H, Yang Z, Zhang MQ, Mak TW, Ni L, Dong C. 2018. Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8+ T Cells. Immunity, 48, 773–786.e5. [CrossRef] [PubMed] [Google Scholar]
  18. Macfarlane LA, Murphy PR. 2010. MicroRNA: Biogenesis, function and role in cancer. Current Genomics, 11, 537–561. [CrossRef] [PubMed] [Google Scholar]
  19. Mehta A, Baltimore D. 2016. MicroRNAs as regulatory elements in immune system logic. Nature Reviews Immunology, 16, 279–294. [CrossRef] [PubMed] [Google Scholar]
  20. Montoya JG, Liesenfeld O. 2004. Toxoplasmosis. Lancet, 363, 1965–1976. [CrossRef] [PubMed] [Google Scholar]
  21. Rothchild AC, Sissons JR, Shafiani S, Plaisier C, Min D, Mai D, Gilchrist M, Peschon J, Larson RP, Bergthaler A, Baliga NS, Urdahl KB, Aderem A. 2016. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E6172–E6181. [CrossRef] [PubMed] [Google Scholar]
  22. Sasai M, Pradipta A, Yamamoto M. 2018. Host immune responses to Toxoplasma gondii. International Immunology, 30, 113–119. [CrossRef] [PubMed] [Google Scholar]
  23. Sasai M, Yamamoto M. 2019. Innate, adaptive, and cell-autonomous immunity against Toxoplasma gondii infection. Experimental and Molecular Medicine, 51, 1–10. [CrossRef] [PubMed] [Google Scholar]
  24. Stelekati E, Chen Z, Manne S, Kurachi M, Ali MA, Lewy K, Cai Z, Nzingha K, McLane LM, Hope JL, Fike AJ, Katsikis PD, Wherry EJ. 2018. Long-term persistence of exhausted CD8 T cells in chronic infection is regulated by MicroRNA-155. Cell Reports, 23, 2142–2156. [CrossRef] [PubMed] [Google Scholar]
  25. Tenter AM, Heckeroth AR, Weiss LM. 2000. Toxoplasma gondii: from animals to humans. International Journal for Parasitology, 30, 1217–1258. [CrossRef] [PubMed] [Google Scholar]
  26. Tait ED, Jordan KA, Dupont CD, Harris TH, Gregg B, Wilson EH, Pepper M, Dzierszinski F, Roos DS, Hunteret CA. 2010. Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells. Journal of Immunology, 185, 1502–1512. [CrossRef] [PubMed] [Google Scholar]
  27. Trotta R, Chen L, Costinean S, Josyula S, Mundy-Bosse BL, Ciarlariello D, Mao C, Briercheck EL, McConnell KK, Mishra A, Yu L, Croce CM, Caligiuri MA. 2013. Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells. Blood, 121, 3126–3134. [CrossRef] [PubMed] [Google Scholar]
  28. Trotta R, Chen L, Ciarlariello D, Josyula S, Mao C, Costinean S, Yu L, Butchar JP, Tridandapani S, Croce CM, Caligiuri MA. 2012. miR-155 regulates IFN-γ production in natural killer cells. Blood, 119, 3478–3485. [CrossRef] [PubMed] [Google Scholar]
  29. Utzschneider DT, Gabriel SS, Chisanga D, Gloury R, Gubser PM, Vasanthakumar A, Vasanthakumar A, Shi W, Kallies A. 2020. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nature Immunology, 21, 1256–1266. [CrossRef] [PubMed] [Google Scholar]
  30. Varikuti S, Natarajan G, Volpedo G, Singh B, Hamza O, Messick GV, Arellano MG, Papenfuss TL, Oghumu S, Satoskar AR. 2019. MicroRNA 155 Contributes to host immunity against Leishmania donovani but is not essential for resolution of infection. Infection and Immunity, 87, e00307-19. [CrossRef] [PubMed] [Google Scholar]
  31. Vigorito E, Kohlhaas S, Lu D, Leyland R. 2013. miR-155: an ancient regulator of the immune system. Immunological Reviews, 253, 146–157. [CrossRef] [PubMed] [Google Scholar]
  32. Wang JL, Zhang NZ, Li TT, He JJ, Elsheikha HM, Zhu XQ. 2019. Advances in the development of anti-Toxoplasma gondii vaccines: Challenges, opportunities, and perspectives. Trends in Parasitology, 35, 239–253. [CrossRef] [PubMed] [Google Scholar]
  33. Zhang NZ, Gao Q, Wang M, Hou JL, Zhang FK, Hu LY, Zhu XQ. 2018. Protective efficacy against acute and chronic Toxoplasma gondii infection induced by immunization with the DNA vaccine TgDOC2C. Frontiers in Microbiology, 9, 2965. [CrossRef] [PubMed] [Google Scholar]
  34. Zhou CX, Ai K, Huang CQ, Guo JJ, Cong H, He SY, Zhu XQ. 2020. miRNA and circRNA expression patterns in mouse brain during toxoplasmosis development. BMC Genomics, 21, 46. [CrossRef] [PubMed] [Google Scholar]
  35. Zhu YC, He Y, Liu JF, Chen J. 2020. Adjuvantic cytokine IL-33 improves the protective immunity of cocktailed DNA vaccine of ROP5 and ROP18 against Toxoplasma gondii infection in mice. Parasite, 27, 26. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Zhu YC, Elsheikha HM, Wang JH, Fang S, He JJ, Zhu XQ, Chen J. 2021. Synergy between Toxoplasma gondii type I Δ GRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. Journal for ImmunoTherapy of Cancer, 9, e002970. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.