Issue
Parasite
Volume 28, 2021
Special Issue – Combatting Anthelmintic resistance in ruminants. Invited Editors: Johannes Charlier, Hervé Hoste, and Smaragda Sotiraki
Article Number 82
Number of page(s) 12
DOI https://doi.org/10.1051/parasite/2021078
Published online 15 December 2021
  1. Alvarado-Villalobos MA, Cringoli G, Maurelli MP, Cambou A, Rinaldi L, Barbachano-Guerrero A, Guevara R, Chapman AC, Serio-Silva JC. 2017. Flotation techniques (FLOTAC and mini-FLOTAC) for detecting gastrointestinal parasites in howler monkeys. Parasites & Vectors, 10(1), 586. [Google Scholar]
  2. Awawdeh L, Turni C, Henning J, Allavena R, Cobbold R, Mollinger J, Gibson JS. 2019. An optimized protocol for molecular screening of avian pathogenic Escherichia Coli from broiler chickens in South East Queensland, Australia. Journal of Applied Poultry Research, 28(4), 1370–1381. [Google Scholar]
  3. Besier RB, Kahn LP, Sargison ND, Van Wyk JA. 2016. Diagnosis, treatment and management of Haemonchus contortus in small ruminants. Advances in Parasitology, 93, 181–238. [Google Scholar]
  4. Bisset SA, Knight JS, Bouchet CL. 2014. A multiplex PCR-based method to identify strongylid parasite larvae recovered from ovine faecal cultures and/or pasture samples. Veterinary Parasitology, 200(1–2), 117–127. [Google Scholar]
  5. Bogoch I, Raso G, N’Goran E, Marti H, Utzinger J. 2006. Differences in microscopic diagnosis of helminths and intestinal protozoa among diagnostic centres. European Journal of Clinical Microbiology and Infectious Diseases, 25(5), 344–347. [Google Scholar]
  6. Clark CH, Kiesel GK, Goby CH. 1962. Measurements of blood loss caused by Haemonchus contortus infection in sheep. American Journal of Veterinary Research, 23, 977–980. [Google Scholar]
  7. Coles GC, Bauer C, Borgsteede FH, Geerts S, Klei TR, Taylor MA, Waller PJ. 1992. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology, 44(1–2), 35–44. [Google Scholar]
  8. Coles GC, Jackson F, Pomroy WE, Prichard RK, von Samson-Himmelstjerna G, Silvestre A, Taylor MA, Vercruysse J. 2006. The detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology, 136(3–4), 167–185. [Google Scholar]
  9. Craig TM. 2018. Gastrointestinal nematodes, diagnosis and control. Veterinary Clinics: Food Animal Practice, 34(1), 185–199. [Google Scholar]
  10. Cringoli G, Rinaldi L, Maurelli MP, Utzinger J. 2010. FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nature Protocols, 5(3), 503. [Google Scholar]
  11. Cringoli G, Maurelli MP, Levecke B, Bosco A, Vercruysse J, Utzinger J, Rinaldi L. 2017. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nature Protocols, 12(9), 1723–1732. [Google Scholar]
  12. Dineen J, Donald A, Wagland B, Offner J. 1965. The dynamics of the host-parasite relationship: III. The response of sheep to primary infection with Haemonchus contortus. Parasitology, 55(3), 515–525. [Google Scholar]
  13. Doyle SR, Illingworth CJR, Laing R, Bartley DJ, Redman E, Martinelli A, Holroyd N, Morrison AA, Rezansoff A, Tracey A, Devaney E, Berriman M, Sargison N, Cotton JA, Gilleard JS. 2019. Population genomic and evolutionary modelling analyses reveal a single major QTL for ivermectin drug resistance in the pathogenic nematode, Haemonchus contortus. BMC Genomics, 20(1), 218. [Google Scholar]
  14. Doyle SR, Tracey A, Laing R, Holroyd N, Bartley D, Bazant W, Beasley H, Beech R, Britton C, Brooks K, Chaudry U, Maitland K, Martinelli A, Noonan JD, Paulini M, Quail MA, Redman E, Rodgers FH, Sallé G, Shabbir MZ, Sankaranarayanan G, Wit J, Howe KL, Sargison N, Devaney E, Berriman M, Gilleard JS, Cotton JA. 2020. Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. Communications Biology, 3, 656. [Google Scholar]
  15. Emery DL, Hunt PW, Le Jambre LF. 2016. Haemonchus contortus: the then and now, and where to from here? International Journal for Parasitology, 46(12), 755–769. [Google Scholar]
  16. Foo PC, Chan YY, Mohamed M, Wong WK, Najian AN, Lim BH. 2017. Development of a thermostabilised triplex LAMP assay with dry-reagent four target lateral flow dipstick for detection of Entamoeba histolytica and non-pathogenic Entamoeba spp. Analytica Chimica Acta, 966, 71–80. [Google Scholar]
  17. Glinz D, Silué KD, Knopp S, Lohourignon LK, Yao KP, Steinmann P, Rinaldi L, Cringoli G, N′Goran EK, Utzinger J. 2010. Comparing diagnostic accuracy of Kato-Katz, Koga agar plate, ether-concentration, and FLOTAC for Schistosoma mansoni and soil-transmitted helminths. PLoS Neglected Tropical Diseases, 4(7), e754. [Google Scholar]
  18. Guevara EE, Frankel DC, Ranaivonasy J, Richard AF, Ratsirarson J, Lawler RR, Bradley BJ. 2018. A simple, economical protocol for DNA extraction and amplification where there is no lab. Conservation Genetics Resources, 10(1), 119–125. [Google Scholar]
  19. Habtamu K, Degarege A, Ye-Ebiyo Y, Erko B. 2011. Comparison of the Kato-Katz and FLOTAC techniques for the diagnosis of soil-transmitted helminth infections. Parasitology International, 60(4), 398–402. [Google Scholar]
  20. Kamphee H, Chaiprasert A, Prammananan T, Wiriyachaiporn N, Kanchanatavee A, Dharakul T. 2015. Rapid molecular detection of multidrug-resistant tuberculosis by PCR-nucleic acid lateral flow immunoassay. PloS One, 10(9), e0137791. [Google Scholar]
  21. Kaneko H, Kawana T, Fukushima E, Suzutani T. 2007. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. Journal of Biochemical and Biophysical Methods, 70(3), 499–501. [Google Scholar]
  22. Khurana S, Sethi S. 2017. Laboratory diagnosis of soil transmitted helminthiasis. Tropical Parasitology, 7(2), 86–91. [Google Scholar]
  23. Kingsbury P. 1965. Relationship between egg counts and worm burdens of young sheep. Veterinary Record, 77(31), 900–901. [Google Scholar]
  24. Koczula KM, Gallotta A. 2016. Lateral flow assays. Essays in Biochemistry, 60(1), 111–120. [Google Scholar]
  25. Kotze AC, Prichard RK. 2016. Anthelmintic resistance in Haemonchus contortus: History, mechanisms and diagnosis. Advances in Parasitology, 93, 397–428. [Google Scholar]
  26. Lai MY, Ooi CH, Jaimin JJ, Lau YL. 2020. Evaluation of WarmStart colorimetric loop-mediated isothermal amplification assay for diagnosis of malaria. American Journal of Tropical Medicine and Hygiene, 102(6), 1370–1372. [Google Scholar]
  27. Laing R, Kikuchi T, Martinelli A, Tsai I, Beech R, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cotton JA. 2013. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biology, 14(8), R88. [Google Scholar]
  28. Levecke B, Kaplan RM, Thamsborg SM, Torgerson PR, Vercruysse J, Dobson RJ. 2018. How to improve the standardization and the diagnostic performance of the fecal egg count reduction test? Veterinary Parasitology, 253, 71–78. [Google Scholar]
  29. Levecke B, Rinaldi L, Charlier J, Maurelli MP, Bosco A, Vercruysse J, Cringoli G. 2012. The bias, accuracy and precision of faecal egg count reduction test results in cattle using McMaster, Cornell-Wisconsin and FLOTAC egg counting methods. Veterinary Parasitology, 188(1–2), 194–199. [Google Scholar]
  30. Levecke B, Speybroeck N, Dobson RJ, Vercruysse J, Charlier J. 2011. Novel insights in the fecal egg count reduction test for monitoring drug efficacy against soil-transmitted helminths in large-scale treatment programs. PLoS Neglected Tropical Diseases, 5(12), e1427. [Google Scholar]
  31. Lin W, Zou B, Song Q, Zhou G. 2015. Progress in multiplex loop-mediated isothermal amplification technology. Yi Chuan, 37(9), 899–910. [Google Scholar]
  32. Mavrot F, Hertzberg H, Torgerson P. 2015. Effect of gastro-intestinal nematode infection on sheep performance: a systematic review and meta-analysis. Parasites & Vectors, 8(1), 557. [Google Scholar]
  33. Melville L, Kenyon F, Javed S, McElarney I, Demeler J, Skuce P. 2014. Development of a loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of Haemonchus contortus eggs in ovine faecal samples. Veterinary Parasitology, 206(3–4), 308–312. [Google Scholar]
  34. Miller CM, Waghorn TS, Leathwick DM, Candy PM, Oliver AM, Watson TG. 2012. The production cost of anthelmintic resistance in lambs. Veterinary Parasitology, 186(3–4), 376–381. [Google Scholar]
  35. Nagamine K, Hase T, Notomi T. 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16(3), 223–229. [Google Scholar]
  36. Nikolay B, Brooker SJ, Pullan RL. 2014. Sensitivity of diagnostic tests for human soil-transmitted helminth infections: a meta-analysis in the absence of a true gold standard. International Journal for Parasitology, 44(11), 765–774. [Google Scholar]
  37. Nkouawa A, Sako Y, Okamoto M, Ito A. 2016. Simple identification of human Taenia species by multiplex loop-mediated isothermal amplification in combination with dot enzyme-linked immunosorbent assay. American Journal of Tropical Medicine and Hygiene, 94(6), 1318–1323. [Google Scholar]
  38. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), E63. [Google Scholar]
  39. Papaiakovou M, Pilotte N, Baumer B, Grant J, Asbjornsdottir K, Schaer F, Hu Y, Aroian R, Walson J, Williams SA. 2018. A comparative analysis of preservation techniques for the optimal molecular detection of hookworm DNA in a human faecal specimen. PLoS Neglected Tropical Diseases, 12(1), e0006130. [Google Scholar]
  40. Paras KL, George MM, Vidyashankar AN, Kaplan RM. 2018. Comparison of fecal egg counting methods in four livestock species. Veterinary Parasitology, 257, 21–27. [Google Scholar]
  41. Preston SJM, Sandeman M, Gonzalez J, Piedrafita D. 2014. Current status for gastrointestinal nematode diagnosis in small ruminants: where are we and where are we going? Journal of Immunology Research, 210350. [Google Scholar]
  42. Rashid MH, Stevenson MA, Waenga S, Mirams G, Campbell AJ, Vaughan JL, Jabbar A. 2018. Comparison of McMaster and FECPAK G2 methods for counting nematode eggs in the faeces of alpacas. Parasites & Vectors, 11(1), 278. [Google Scholar]
  43. Redman E, Packard E, Grillo V, Smith J, Jackson F, Gilleard JS. 2008. Microsatellite analysis reveals marked genetic differentiation between Haemonchus contortus laboratory isolates and provides a rapid system of genetic fingerprinting. International Journal for Parasitology, 38(1), 111–122. [Google Scholar]
  44. Roeber F, Jex AR, Campbell AJ, Nielsen R, Anderson GA, Stanley KK, Gasser RB. 2012. Establishment of a robotic, high-throughput platform for the specific diagnosis of gastrointestinal nematode infections in sheep. International Journal for Parasitology, 42(13–14), 1151–1158. [Google Scholar]
  45. Rohrman BA, Leautaud V, Molyneux E, Richards-Kortum RR. 2012. A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One, 7(9), e45611. [Google Scholar]
  46. Sallé G, Doyle S, Cortet J, Cabaret J, Berriman M, Holroyd N, Cotton JA. 2019. The global diversity of Haemonchus contortus is shaped by human intervention and climate. Nature Communications, 10(1), 4811. [Google Scholar]
  47. Srisrattakarn A, Lulitanond A, Wilailuckana C, Charoensri N, Wonglakorn L, Saenjamla P, Chaimanee P, Daduang J, Chanawong A. 2017. Rapid and simple identification of carbapenemase genes, bla NDM, bla OXA-48, bla VIM, bla IMP-14 and bla KPC groups, in Gram-negative bacilli by in-house loop-mediated isothermal amplification with hydroxynaphthol blue dye. World Journal of Microbiology and Biotechnology, 33(7), 130. [Google Scholar]
  48. Sweeny JP, Gardner GE, Dobson RJ, Jacobson C, Bell K. 2011. Associations between trichostrongylid worm egg count and productivity measures in Dorper lambs. Veterinary Parasitology, 180(3–4), 307–314. [Google Scholar]
  49. Tran DH, Tran HT, Le UP, Vu XD, Trinh TBN, Do HDK, Than VT, Bui LM, Nguyen TL, Phung HTT, Le VP. 2020. Direct colorimetric LAMP assay for rapid detection of African swine fever virus: A validation study during an outbreak in Vietnam. Transboundary and Emerging Diseases. [Google Scholar]
  50. Urquhart JM, Armour J, Duncan JL, Dunn AM, Jennings FM. 1996. Veterinary Parasitology, 2nd edn. Blackwell Science Ltd.: London. [Google Scholar]
  51. Utzinger J, Rinaldi L, Lohourignon LK, Rohner F, Zimmermann MB, Tschannen AB, N′Goran EK, Cringoli G. 2008. FLOTAC: a new sensitive technique for the diagnosis of hookworm infections in humans. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(1), 84–90. [Google Scholar]
  52. Whitlock H. 1948. Some modifications of the McMaster helminth egg-counting technique and apparatus. Journal of the Council for Scientific and Industrial Research Australia, 21(3), 177–180. [Google Scholar]
  53. Woolaston R, Baker R. 1996. Prospects of breeding small ruminants for resistance to internal parasites. International Journal for Parasitology, 26(8–9), 845–855. [Google Scholar]
  54. Yin K, Pandian V, Kadimisetty K, Zhang X, Ruiz C, Cooper K, Liu C. 2020. Real-time colorimetric quantitative molecular detection of infectious diseases on smartphone-based diagnostic platform. Scientific Reports, 10, 9009. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.