Open Access
Research Article
Issue
Parasite
Volume 28, 2021
Article Number 37
Number of page(s) 15
DOI https://doi.org/10.1051/parasite/2021030
Published online 14 April 2021
  1. Abdel-Hamid YM, Soliman MI, Kenawy MA. 2011. Mosquitoes (Diptera: Culicidae) in relation to the risk of disease transmission in El Ismailia Governorate, Egypt. Journal of the Egyptian Society of Parasitology, 41(2), 347–356. [PubMed] [Google Scholar]
  2. Aboulfadl S, Mellouki F, Aouinty B, Faraj C. 2020. Susceptibility status of Culex pipiens larvae (Diptera: Culicidae) to the main insecticides used in larval control in the regions of Rabat and Casablanca in Morocco. International Journal of Pest Management, 1–7. [Google Scholar]
  3. Abozeid S, Elsayed AK, Schaffner F, Samy AM. 2018. Re-emergence of Aedes aegypti in Egypt. Lancet Infectious Diseases, 18(2), 142–143. [Google Scholar]
  4. Amraoui F, Ben Ayed W, Madec Y, Faraj C, Himmi O, Btissam A, Sarih M, Failloux AB. 2019. Potential of Aedes albopictus to cause the emergence of arboviruses in Morocco. PLoS Neglected Tropical Diseases, 13(2), e0006997. [CrossRef] [PubMed] [Google Scholar]
  5. Amraoui F, Krida G, Bouattour A, Rhim A, Daaboub J, Harrat Z, Boubidi SC, Tijane M, Sarih M, Failloux AB. 2012. Culex pipiens, an experimental efficient vector of West Nile and Rift Valley fever viruses in the Maghreb region. PLoS One, 7(5), e36757. [CrossRef] [PubMed] [Google Scholar]
  6. Amraoui F, Pain A, Piorkowski G, Vazeille M, Couto-Lima D, de Lamballerie X, Lourenco-de-Oliveira R, Failloux AB. 2018. Experimental adaptation of the Yellow Fever Virus to the mosquito Aedes albopictus and potential risk of urban epidemics in Brazil, South America. Scientific Reports, 8(1), 14337. [CrossRef] [PubMed] [Google Scholar]
  7. Amraoui F, Vazeille M, Failloux AB. 2016. French Aedes albopictus are able to transmit yellow fever virus. Eurosurveillance, 21(39), 30361. [Google Scholar]
  8. Anfreville L. 1916. Les Moustiques de Salé (Maroc). Bulletin de la Société de Pathologie Exotique, 9, 140–142. [Google Scholar]
  9. Apodaca-Medina AI, Torres-Avendano JI, Rendon-Maldonado JG, Torres-Montoya EH, Flores-Lopez BA, Del Angel RM, Velarde-Felix JS, Salomon-Soto VM, Castillo-Ureta H. 2018. First evidence of vertical infection of Dengue virus 2 in Aedes aegypti mosquitoes from Sinaloa, Mexico. Vector-Borne and Zoonotic Diseases, 18(4), 231–233. [Google Scholar]
  10. Bailly CH. 1973. Etude préliminaire d’une récolte d’Anopheles labranchae par piège C.D.C réalisée dans la région de Larache, Maroc. Bulletin de l’Organisation Mondiale de la Santé, 49, 49–55. [Google Scholar]
  11. Bajjou T, Akhouad Y, Hilali F, Elkochri S, Laraqui A, Touil N, Lahlou Amine I, Mahassine F, Sekhsokh Y. 2018. Dengue fever in Morocco: result of surveillance during the year 2017 and first imported cases. International Journal of Research in Medical Sciences, 6(3), 1029. [Google Scholar]
  12. Bajjou T, Reggad A, Hilali F, Elkochri S, Laraqui A, Touil N, Lahlou Amine I, Sekhsokh Y, Mahassine F. 2017. Chikungunya infection confirmed in a Moroccan traveller returning from Bangladesh. International Journal of Research in Medical Sciences, 6(1), 343. [Google Scholar]
  13. Balenghien T, Vazeille M, Grandadam M, Schaffner F, Zeller H, Reiter P, Sabatier P, Fouque F, Bicout DJ. 2008. Vector competence of some French Culex and Aedes mosquitoes for West Nile Virus. Vector-Borne and Zoonotic Diseases, 8(5), 589–596. [Google Scholar]
  14. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 180214. [CrossRef] [PubMed] [Google Scholar]
  15. Becker N, Petrj D, Zgomba M, Boase C, Madon M, Dahl C, Kaiser A. 2020. Mosquitoes and their control, 3 edn. Springer. p. 587. [Google Scholar]
  16. Ben Ayed W, Amraoui F, M’Ghirbi Y, Schaffner F, Rhaim A, Failloux AB, Bouattour A. 2019. A survey of Aedes (Diptera: Culicidae) Mosquitoes in Tunisia and the potential role of Aedes detritus and Aedes caspius in the transmission of Zika Virus. Journal of Medical Entomology, 56(5), 1377–1383. [CrossRef] [PubMed] [Google Scholar]
  17. Bennouna A, Balenghien T, El Rhaffouli H, Schaffner F, Garros C, Gardes L, Lhor Y, Hammoumi S, Chlyeh G, Fassi Fihri O. 2017. First record of Stegomyia albopicta (= Aedes albopictus) in Morocco: a major threat to public health in North Africa? Medical and Veterinary Entomology, 31(1), 102–106. [CrossRef] [PubMed] [Google Scholar]
  18. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution and burden of dengue. Nature, 496(7446), 504–507. [CrossRef] [PubMed] [Google Scholar]
  19. Birnberg L, Talavera S, Aranda C, Nunez AI, Napp S, Busquets N. 2019. Field-captured Aedes vexans (Meigen, 1830) is a competent vector for Rift Valley fever phlebovirus in Europe. Parasites & Vectors, 12(1), 484. [CrossRef] [PubMed] [Google Scholar]
  20. Bkhache M, Tmimi F-Z, Charafeddine O, Faraj C, Failloux A-B, Sarih Mh. 2016. First report of L1014F-kdr mutation in Culex pipiens complex from Morocco. Parasites & Vectors, 9(1), 644. [CrossRef] [PubMed] [Google Scholar]
  21. Blagrove MS, Sherlock K, Chapman GE, Impoinvil DE, McCall PJ, Medlock JM, Lycett G, Solomon T, Baylis M. 2016. Evaluation of the vector competence of a native UK mosquito Ochlerotatus detritus (Aedes detritus) for dengue, chikungunya and West Nile viruses. Parasites & Vectors, 9, 452. [CrossRef] [PubMed] [Google Scholar]
  22. Blagrove MSC, Caminade C, Diggle PJ, Patterson EI, Sherlock K, Chapman GE, Hesson J, Metelmann S, McCall PJ, Lycett G, Medlock J, Hughes GL, Torre Ad, Baylis M. 2020. Potential for Zika virus transmission by mosquitoes in temperate climates. Proceedings of the Royal Society B: Biological Sciences, 287(1930), 20200119. [Google Scholar]
  23. Blagrove MSC, Sherlock K, Chapman GE, Impoinvil DE, McCall PJ, Medlock JM, Lycett G, Solomon T, Baylis M. 2016. Evaluation of the vector competence of a native UK mosquito Ochlerotatus detritus (Aedes detritus) for dengue, chikungunya and West Nile viruses. Parasites & Vectors, 9(1), 452. [CrossRef] [PubMed] [Google Scholar]
  24. Bogoch II, Brady OJ, Kraemer MUG, German M, Creatore MI, Kulkarni MA, Brownstein JS, Mekaru SR, Hay SI, Groot E, Watts A, Khan K. 2016. Anticipating the international spread of Zika virus from Brazil. Lancet, 387(10016), 335–336. [CrossRef] [PubMed] [Google Scholar]
  25. Bouallam S. 1992. Le paludisme et les moustiques dans la région de Marrakech. Ecologie et cycles biologiques des espèces culicidiennes, Thèse de Doctorat de 3e cycle, Université Cadi Ayyad. [Google Scholar]
  26. Boukraa S, Dekoninck W, Versteirt V, Schaffner F, Coosemans M, Haubruge E, Francis F. 2015. Updated checklist of the mosquitoes (Diptera: Culicidae) of Belgium. Journal of Vector Ecology, 40(2), 398–407. [Google Scholar]
  27. Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Delatte H, Grech MG, Leisnham PT, Maciel-de-Freitas R, Styer LM, Smith DL, Scott TW, Gething PW, Hay SI. 2013. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites & Vectors, 6, 351. [CrossRef] [PubMed] [Google Scholar]
  28. Brengues C, Ferré JB, Le Goff G, Lami P, Pratlong F, Pasteur N, Lagneau C, Simard F, Robert V. 2014. A multiplex PCR to differentiate the two sibling species of mosquitoes Ochlerotatus detritus and Oc. coluzzii and evidence for further genetic heterogeneity within the Detritus complex. Infection, Genetics and Evolution, 28, 676–680. [Google Scholar]
  29. Brown JL, Bennett JR, French CM. 2017. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 5, e4095. [CrossRef] [PubMed] [Google Scholar]
  30. Brugman VA, Hernández-Triana LM, Medlock JM, Fooks AR, Carpenter S, Johnson N. 2018. The role of Culex pipiens L. (Diptera: Culicidae) in virus transmission in Europe. International Journal of Environmental Research and Public Health, 15(2), 389. [Google Scholar]
  31. Brugueras S, Fernández-Martínez B, Martínez-de la Puente J, Figuerola J, Porro TM, Rius C, Larrauri A, Gómez-Barroso D. 2020. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: a systematic review. Environmental Research, 191, 110038. [CrossRef] [PubMed] [Google Scholar]
  32. Brustolin M, Santamaria C, Napp S, Verdun M, Rivas R, Pujol N, Talavera S, Busquets N. 2018. Experimental study of the susceptibility of a European Aedes albopictus strain to dengue virus under a simulated Mediterranean temperature regime. Medical and Veterinary Entomology, 32(4), 393–398. [CrossRef] [PubMed] [Google Scholar]
  33. Brustolin M, Talavera S, Nunez A, Santamaria C, Rivas R, Pujol N, Valle M, Verdun M, Brun A, Pages N, Busquets N. 2017. Rift valley fever virus and European mosquitoes: vector competence of Culex pipiens and Stegomyia albopicta (= Aedes albopictus). Medical and Veterinary Entomology, 31(4), 365–372. [CrossRef] [PubMed] [Google Scholar]
  34. Brustolin M, Talavera S, Santamaria C, Rivas R, Pujol N, Aranda C, Marques E, Valle M, Verdun M, Pages N, Busquets N. 2016. Culex pipiens and Stegomyia albopicta (= Aedes albopictus) populations as vectors for lineage 1 and 2 West Nile virus in Europe. Medical and Veterinary Entomology, 30(2), 166–173. [CrossRef] [PubMed] [Google Scholar]
  35. Bueno-Mari R, Jimenez-Peydro R. 2013. Global change and human vulnerability to vector-borne diseases. Frontiers in Physiology, 4, 158. [PubMed] [Google Scholar]
  36. Calzolari M, Bonilauri P, Bellini R, Albieri A, Defilippo F, Maioli G, Galletti G, Gelati A, Barbieri I, Tamba M, Lelli D, Carra E, Cordioli P, Angelini P, Dottori M. 2010. Evidence of simultaneous circulation of West Nile and Usutu viruses in mosquitoes sampled in Emilia-Romagna region (Italy) in 2009. PLoS One, 5(12), e14324. [CrossRef] [PubMed] [Google Scholar]
  37. Carron A, Bichaud L, Platz N, Bicout DJ. 2008. Survivorship characteristics of the mosquito Aedes caspius adults from southern France under laboratory conditions. Medical and Veterinary Entomology, 22(1), 70–73. [CrossRef] [PubMed] [Google Scholar]
  38. Cevallos V, Ponce P, Waggoner JJ, Pinsky BA, Coloma J, Quiroga C, Morales D, Cardenas MJ. 2018. Zika and Chikungunya virus detection in naturally infected Aedes aegypti in Ecuador. Acta Tropica, 177, 74–80. [CrossRef] [PubMed] [Google Scholar]
  39. Charrier H. 1924. Le Stegomyia fasciata dans la région de Tanger (Maroc). Bulletin de la Société de Pathologie Exotique, 17, 137–142. [Google Scholar]
  40. Christophers R. 1960. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. Cambridge, UK: Cambridge University Press. [Google Scholar]
  41. Ciota AT, Bialosuknia SM, Ehrbar DJ, Kramer LD. 2017. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes. Emerging Infectious Diseases, 23(5), 880–882. [CrossRef] [PubMed] [Google Scholar]
  42. Cobos ME, Peterson AT, Barve N, Osorio-Olvera L. 2019. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7, e6281. [CrossRef] [PubMed] [Google Scholar]
  43. Conley AK, Fuller DO, Haddad N, Hassan AN, Gad AM, Beier JC. 2014. Modeling the distribution of the West Nile and Rift Valley Fever vector Culex pipiens in arid and semi-arid regions of the Middle East and North Africa. Parasites & Vectors, 7, 289. [CrossRef] [PubMed] [Google Scholar]
  44. Cook CL, Huang YS, Lyons AC, Alto BW, Unlu I, Higgs S, Vanlandingham DL. 2018. North American Culex pipiens and Culex quinquefasciatus are competent vectors for Usutu virus. PLOS Neglected Tropical Diseases, 12(8), e0006732. [CrossRef] [PubMed] [Google Scholar]
  45. Costa-da-Silva AL, Ioshino RS, Petersen V, Lima AF, Cunha MDP, Wiley MR, Ladner JT, Prieto K, Palacios G, Costa DD, Suesdek L, Zanotto PMA, Capurro ML. 2017. First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas. PLoS Neglected Tropical Diseases, 11(6), e0005630. [CrossRef] [PubMed] [Google Scholar]
  46. Cunze S, Kochmann J, Koch LK, Klimpel S. 2016. Aedes albopictus and its environmental limits in Europe. PLoS One, 11(9), e0162116. [CrossRef] [PubMed] [Google Scholar]
  47. da Costa CF, da Silva AV, do Nascimento VA, de Souza VC, Monteiro D, Terrazas WCM, Dos Passos RA, Nascimento S, Lima JBP, Naveca FG. 2018. Evidence of vertical transmission of Zika virus in field-collected eggs of Aedes aegypti in the Brazilian Amazon. PLoS Neglected Tropical Diseases, 12(7), e0006594. [CrossRef] [PubMed] [Google Scholar]
  48. de Wispelaere M, Despres P, Choumet V. 2017. European Aedes albopictus and Culex pipiens are competent vectors for Japanese encephalitis virus. PLoS Neglected Tropical Diseases, 11(1), e0005294. [CrossRef] [PubMed] [Google Scholar]
  49. Diagne C, Faye O, Guerbois Galla M, Knight R, Diallo D, Faye O, Ba Y, Dia I, Weaver S, Sall AA, Diallo M. 2014. Vector competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde Archipelago for West African Lineages of Chikungunya Virus. American Journal of Tropical Medicine and Hygiene, 91(3), 635–641. [Google Scholar]
  50. Diagne CT, Diallo D, Faye O, Ba Y, Faye O, Gaye A, Dia I, Faye O, Weaver SC, Sall AA, Diallo M. 2015. Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infectious Diseases, 15, 492. [CrossRef] [PubMed] [Google Scholar]
  51. Diallo D, Sall AA, Diagne CT, Faye O, Faye O, Ba Y, Hanley KA, Buenemann M, Weaver SC, Diallo M. 2014. Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PLoS One, 9(10), e109442. [CrossRef] [PubMed] [Google Scholar]
  52. Dickens BL, Sun H, Jit M, Cook AR, Carrasco LR. 2018. Determining environmental and anthropogenic factors which explain the global distribution of Aedes aegypti and Ae. albopictus. BMJ Global Health, 3(4), e000801. [CrossRef] [PubMed] [Google Scholar]
  53. Diez-Fernandez A, Martinez-de la Puente J, Ruiz S, Gutierrez-Lopez R, Soriguer R, Figuerola J. 2018. Aedes vittatus in Spain: current distribution, barcoding characterization and potential role as a vector of human diseases. Parasites & Vectors, 11(1), 297. [CrossRef] [PubMed] [Google Scholar]
  54. ECDC. 2016. Aedes albopictus – Factsheet for experts. [cited 17/03/2019]. Available from: https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-albopictus. [Google Scholar]
  55. ECDC. 2020. Aedes caspius - current known distribution: May 2020. Stockholm: ECDC. [cited 2020 01/11]. Available from: Mosquito maps [internet]. Available from: https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps. [Google Scholar]
  56. El Ouali Lalami A, El-Akhal F, El Amri N, Maniar S, Faraj C. 2014. État de la résistance du moustique Culex pipiens vis-à-vis du téméphos au centre du Maroc. Bulletin de la Société de Pathologie Exotique, 107, 194–197. [Google Scholar]
  57. El Ouali Lalami A, Hindi T, Azzouzi A, Elghadraoui L, Maniar S, Faraj C, Adlaoui E, Ameur I, Ibnsouda Koraichi S. 2010. Inventaire et répartition saisonnière des Culicidae dans le centre du Maroc. Entomologie Faunistique, 62(4), 131–138. [Google Scholar]
  58. Elizondo-Quiroga D, Medina-Sanchez A, Sanchez-Gonzalez JM, Eckert KA, Villalobos-Sanchez E, Navarro-Zuniga AR, Sanchez-Tejeda G, Correa-Morales F, Gonzalez-Acosta C, Arias CF, Lopez S, Del Angel RM, Pando-Robles V, Elizondo-Quiroga AE. 2018. Zika Virus in salivary glands of five different species of wild-caught mosquitoes from Mexico. Scientific Reports, 8(1), 809. [CrossRef] [PubMed] [Google Scholar]
  59. Ergunay K, Gunay F, Erisoz Kasap O, Oter K, Gargari S, Karaoglu T, Tezcan S, Cabalar M, Yildirim Y, Emekdas G, Alten B, Ozkul A. 2014. Serological, molecular and entomological surveillance demonstrates widespread circulation of West Nile virus in Turkey. PLoS Neglected Tropical Diseases, 8(7), e3028. [CrossRef] [PubMed] [Google Scholar]
  60. Ewing DA, Cobbold CA, Purse BV, Nunn MA, White SM. 2016. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. Journal of Theoretical Biology, 400, 65–79. [CrossRef] [PubMed] [Google Scholar]
  61. Failloux AB, Bouattour A, Faraj C, Gunay F, Haddad N, Harrat Z, Jancheska E, Kanani K, Kenawy MA, Kota M, Pajovic I, Paronyan L, Petric D, Sarih M, Sawalha S, Shaibi T, Sherifi K, Sulesco T, Velo E, Gaayeb L, Victoir K, Robert V. 2017. Surveillance of arthropod-borne viruses and their vectors in the Mediterranean and Black Sea regions within the MediLabSecure Network. Current Tropical Medicine Reports, 4(1), 27–39. [CrossRef] [PubMed] [Google Scholar]
  62. Fall AG, Diaite A, Etter E, Bouyer J, Ndiaye TD, Konate L. 2012. The mosquito Aedes (Aedimorphus) vexans arabiensis as a probable vector bridging the West Nile virus between birds and horses in Barkedji (Ferlo, Senegal). Medical and Veterinary Entomology, 26(1), 106–111. [CrossRef] [PubMed] [Google Scholar]
  63. Faraj C, Adlaoui E, Brengues C, Fontenille D, Lyagoubi M. 2008. Résistance d’Anopheles labranchiae au DDT au Maroc: identification des mécanismes et choix d’un insecticide de remplacement. Eastern Mediterranean Health Journal, 14(4), 776–783. [Google Scholar]
  64. Feng X, Park DS, Liang Y, Pandey R, Papes M. 2019. Collinearity in ecological niche modeling: confusions and challenges. Ecology and Evolution, 9(18), 10365–10376. [CrossRef] [PubMed] [Google Scholar]
  65. Ferreira-de-Brito A, Ribeiro IP, Miranda RM, Fernandes RS, Campos SS, Silva KA, Castro MG, Bonaldo MC, Brasil P, Lourenco-de-Oliveira R. 2016. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Memorias do Instituto Oswaldo Cruz, 111(10), 655–658. [CrossRef] [PubMed] [Google Scholar]
  66. Gaud J. 1947. Contribution à l’étude des Culicides au Maroc, quatre espèces nouvelles pour la faune locale. Bulletin de la Société des Sciences Naturelles du Maroc, 25–27, 204–206. [Google Scholar]
  67. Gaud J. 1953. Notes biogéographiques sur les Culicidés du Maroc. Archives de l’Institut Pasteur du Maroc, 4, 443–490. [Google Scholar]
  68. GBIF. 2020. GBIF occurrence. Download: https://doi.org/10.15468/dl.fygusa. [Google Scholar]
  69. Gendernalik A, Weger-Lucarelli J, Garcia Luna SM, Fauver JR, Ruckert C, Murrieta RA, Bergren N, Samaras D, Nguyen C, Kading RC, Ebel GD. 2017. American Aedes vexans mosquitoes are competent vectors of Zika Virus. American Journal of Tropical Medicine and Hygiene, 96(6), 1338–1340. [Google Scholar]
  70. Germain M, Francy DB, Monath TP, Ferrara L, Bryan J, Salaun JJ, Heme G, Renaudet J, Adam C, Digoutte JP. 1980. Yellow fever in the Gambia, 1978–1979: entomological aspects and epidemiological correlations. American Journal of Tropical Medicine and Hygiene, 29(5), 929–940. [Google Scholar]
  71. Guerbois M, Fernandez-Salas I, Azar SR, Danis-Lozano R, Alpuche-Aranda CM, Leal G, Garcia-Malo IR, Diaz-Gonzalez EE, Casas-Martinez M, Rossi SL, Del Rio-Galvan SL, Sanchez-Casas RM, Roundy CM, Wood TG, Widen SG, Vasilakis N, Weaver SC. 2016. Outbreak of Zika virus infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti Mosquitoes in the Americas. Journal of Infectious Diseases, 214(9), 1349–1356. [Google Scholar]
  72. Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D, Ou M, Han Y, Huang S, Liu D, Ye X, Zou X, Wu J, Wang H, Zeng EY, Jing C, Yang G. 2017. Global epidemiology of dengue outbreaks in 1990–2015: a systematic review and meta-analysis. Frontiers in Cellular and Infection Microbiology, 7, 317. [CrossRef] [PubMed] [Google Scholar]
  73. Gutierrez-Lopez R, Bialosuknia SM, Ciota AT, Montalvo T, Martinez-de la Puente J, Gangoso L, Figuerola J, Kramer LD. 2019. Vector competence of Aedes caspius and Ae. albopictus mosquitoes for Zika virus, Spain. Emerging Infectious Diseases, 25(2), 346–348. [CrossRef] [PubMed] [Google Scholar]
  74. Guy Y. 1963. Bilan épidémiologique du paludisme au Maroc (données recueillies entre 1960, 1961 et 1962). Annales de Parasitologie Humaine et Comparée, 38(5), 823–857. [Google Scholar]
  75. Guy Y, Holsteun M. 1968. Données récentes sur les Anophèles du Maghreb. Archives de l’Institut Pasteur d’Algérie, 45, 51–61. [Google Scholar]
  76. Guy Y, Salieres A, Boesiger E. 1976. Contribution à l’étude du complexe maculipennis (Diptera – Culicidae – Anophelinae). Mise au point en 1975. Annales de Biologie, 15, 5–6. [Google Scholar]
  77. Hammon WM, Reeves WC. 1943. Laboratory transmission of St. Louis Encephalitis Virus by three genera of mosquitoes. Journal of Experimental Medicine, 78(4), 241–253. [Google Scholar]
  78. Handaq N. 1998. Les moustiques du Maroc: écologie et biogéographie des peuplements culicidiens dans les régions montagneuses, semi arides et arides du Maroc occidental : Essai de biotypologie des gîtes larvaires et étude comparative de la dynamique des populations marocaines et tunisiennes. Thèse de Doctorat de 3e cycle, Université Cadi Ayad, Faculté de Sciences Semlalia Marrakech. [Google Scholar]
  79. Handaq N, Blenzar A. 2017. Impact des eaux usées et des aménagements urbains sur la répartition des espèces de Culicidae (Diptera Nematocera) dans la ville de Meknès (Maroc). European Scientific Journal, 13(27), 184–200. [Google Scholar]
  80. Harbach RE. 2012. Culex pipiens: species versus species complex taxonomic history and perspective. Journal of the American Mosquito Control Association, 28(4 Suppl), 10–23. [CrossRef] [PubMed] [Google Scholar]
  81. Himmi O. 2007. Les Culicides (Insectes, Diptères) au Maroc: Systématique, écologique et études épidémiologiques pilotes. Rabat, Morocco: Université Mohammed V. [Google Scholar]
  82. Johnson TL, Haque U, Monaghan AJ, Eisen L, Hahn MB, Hayden MH, Savage HM, McAllister J, Mutebi J-P, Eisen RJ. 2017. Modeling the environmental suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the contiguous United States. Journal of Medical Entomology, 54(6), 1605–1614. [CrossRef] [PubMed] [Google Scholar]
  83. Boorman JPT. 1958. Transmission of Uganda S virus by Aedes (Stegomyia) aegypti Linn. Transactions of the Royal Society of Tropical Medicine and Hygiene, 52(4), 383–388. [CrossRef] [PubMed] [Google Scholar]
  84. Jueterbock A, Smolina I, Coyer JA, Hoarau G. 2016. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Ecology and Evolution, 6(6), 1712–1724. [CrossRef] [PubMed] [Google Scholar]
  85. Kamal M, Kenawy MA, Rady MH, Khaled AS, Samy AM. 2018. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS One, 13(12), e0210122. [CrossRef] [PubMed] [Google Scholar]
  86. Kantor AM, Lin J, Wang A, Thompson DC, Franz AWE. 2019. Infection pattern of Mayaro Virus in Aedes aegypti (Diptera: Culicidae) and transmission potential of the virus in mixed infections with Chikungunya Virus. Journal of Medical Entomology, 56(3), 832–843. [CrossRef] [PubMed] [Google Scholar]
  87. Khormi HM, Kumar L. 2014. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX. Geospatial Health, 8(2), 405–415. [CrossRef] [PubMed] [Google Scholar]
  88. Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Elyazar IR, Teng HJ, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GR, Golding N, Hay SI. 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife, 4, e08347. [CrossRef] [PubMed] [Google Scholar]
  89. Kraemer MUG, Reiner RC Jr, Brady OJ, Messina JP, Gilbert M, Pigott DM, Yi D, Johnson K, Earl L, Marczak LB, Shirude S, Davis Weaver N, Bisanzio D, Perkins TA, Lai S, Lu X, Jones P, Coelho GE, Carvalho RG, Van Bortel W, Marsboom C, Hendrickx G, Schaffner F, Moore CG, Nax HH, Bengtsson L, Wetter E, Tatem AJ, Brownstein JS, Smith DL, Lambrechts L, Cauchemez S, Linard C, Faria NR, Pybus OG, Scott TW, Liu Q, Yu H, Wint GRW, Hay SI, Golding N. 2019. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 4(5), 854–863. [CrossRef] [PubMed] [Google Scholar]
  90. Kraemer MUG, Sinka ME, Duda KA, Mylne A, Shearer FM, Brady OJ, Messina JP, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Wint GRW, Elyazar IRF, Teng H-J, Hay SI. 2015. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Scientific Data, 2, 150035. [CrossRef] [PubMed] [Google Scholar]
  91. Lazear HM, Diamond MS. 2016. Zika virus: new clinical syndromes and its emergence in the Western Hemisphere. Journal of Virology, 90(10), 4864–4875. [CrossRef] [PubMed] [Google Scholar]
  92. Li MI, Wong PS, Ng LC, Tan CH. 2012. Oral susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika virus. PLoS Neglected Tropical Diseases, 6(8), e1792. [CrossRef] [PubMed] [Google Scholar]
  93. Li Y, Li M, Li C, Liu Z. 2020. Optimized Maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests, 11(3), 302. [Google Scholar]
  94. Lobo JM, Jiménez-Valverde A, Real R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. [Google Scholar]
  95. Lourenco-de-Oliveira R, Vazeille M, Bispo de Filippis AM, Failloux AB. 2002. Oral susceptibility to yellow fever virus of Aedes aegypti from Brazil. Memorias do Instituto Oswaldo Cruz, 97(3), 437–439. [CrossRef] [PubMed] [Google Scholar]
  96. Lozano-Fuentes S, Kenney JL, Varnado W, Byrd BD, Burkhalter KL, Savage HM. 2019. Susceptibility and vectorial capacity of American Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to American Zika Virus Strains. Journal of Medical Entomology, 56(1), 233–240. [CrossRef] [PubMed] [Google Scholar]
  97. Lumley S, Hernández-Triana LM, Horton DL, Fernández de Marco MDM, Medlock JM, Hewson R, Fooks AR, Johnson N. 2018. Competence of mosquitoes native to the United Kingdom to support replication and transmission of Rift Valley fever virus. Parasites & Vectors, 11(1), 308. [CrossRef] [PubMed] [Google Scholar]
  98. Lundstrom JO. 1999. Mosquito-borne viruses in western Europe: a review. Journal of Vector Ecology, 24(1), 1–39. [Google Scholar]
  99. Lwande OW, Naslund J, Lundmark E, Ahlm K, Ahlm C, Bucht G, Evander M. 2019. Experimental infection and transmission competence of Sindbis virus in Culex torrentium and Culex pipiens Mosquitoes from Northern Sweden. Vector-Borne and Zoonotic Diseases, 19(2), 128–133. [Google Scholar]
  100. Ma H, Bandos AI, Rockette HE, Gur D. 2013. On use of partial area under the ROC curve for evaluation of diagnostic performance. Statistics in Medicine, 32(20), 3449–3458. [CrossRef] [PubMed] [Google Scholar]
  101. Mackenzie-Impoinvil L, Impoinvil DE, Galbraith SE, Dillon RJ, Ranson H, Johnson N, Fooks AR, Solomon T, Baylis M. 2015. Evaluation of a temperate climate mosquito, Ochlerotatus detritus (=Aedes detritus), as a potential vector of Japanese encephalitis virus. Medical and Veterinary Entomology, 29(1), 1–9. [CrossRef] [PubMed] [Google Scholar]
  102. Magalhaes T, Robison A, Young MC, Black WCt, Foy BD, Ebel GD, Ruckert C. 2018. Sequential infection of Aedes aegypti mosquitoes with Chikungunya Virus and Zika Virus enhances early Zika Virus transmission. Insects, 9(4), 177. [Google Scholar]
  103. Main BJ, Nicholson J, Winokur OC, Steiner C, Riemersma KK, Stuart J, Takeshita R, Krasnec M, Barker CM, Coffey LL. 2018. Vector competence of Aedes aegypti, Culex tarsalis, and Culex quinquefasciatus from California for Zika virus. PLOS Neglected Tropical Diseases, 12(6), e0006524. [CrossRef] [PubMed] [Google Scholar]
  104. Mancini G, Montarsi F, Calzolari M, Capelli G, Dottori M, Ravagnan S, Lelli D, Chiari M, Santilli A, Quaglia M, Quaglia M, Federici V, Monaco F, Goffredo M, Savini G. 2017. Mosquito species involved in the circulation of West Nile and Usutu viruses in Italy. Veterinaria Italiana, 53(2), 97–110. [PubMed] [Google Scholar]
  105. Mavale MS, Ilkal MA, Dhanda V. 1992. Experimental studies on the susceptibility of Aedes vittatus to dengue viruses. Acta Virologica, 36(4), 412–416. [Google Scholar]
  106. Mavridis K, Fotakis EA, Kioulos I, Mpellou S, Konstantas S, Varela E, Gewehr S, Diamantopoulos V, Vontas J. 2018. Detection of West Nile Virus - Lineage 2 in Culex pipiens mosquitoes, associated with disease outbreak in Greece, 2017. Acta Tropica, 182, 64–68. [Google Scholar]
  107. Medlock JM, Cull B, Vaux AGC, Irwin AG. 2017. The mosquito Aedes vexans in England. Veterinary Record, 181(9), 243. [Google Scholar]
  108. Medlock JM, Hansford KM, Versteirt V, Cull B, Kampen H, Fontenille D, Hendrickx G, Zeller H, Van Bortel W, Schaffner F. 2015. An entomological review of invasive mosquitoes in Europe. Bulletin of Entomological Research, 105(6), 637–663. [Google Scholar]
  109. Metge G. 1986. Étude des écosystèmes hydromorphes (Daya et Merja) de la Meseta occidentale marocaine. Typologie et synthèse cartographique à objectif sanitaire, appliquée aux populations d’Anopheles labranchiae (Falleroni, 1926) (Diptera, Culicidae, Anophelinae). Marseille, France: Université Aix-Marseille. [Google Scholar]
  110. Metge G. 1991. Contribution à l’étude écologique d’Anopheles labranchae au Maroc: activité des imagos et dynamique des stades pré-imaginaux de la région Sidi Bettache. Bulletin d’Écologie, 22(3–4), 419–426. [Google Scholar]
  111. Metge G, Hassaïne K. 1998. Study of the environmental factors associated with oviposition by Aedes caspius and Aedes detritus along a transect in Algeria. Journal of the American Mosquito Control Association, 14(3), 283–288. [Google Scholar]
  112. Miller BR, Godsey MS, Crabtree MB, Savage HM, Al-Mazrao Y, Al-Jeffri MH, Abdoon AM, Al-Seghayer SM, Al-Shahrani AM, Ksiazek TG. 2002. Isolation and genetic characterization of Rift valley fever virus from Aedes vexans arabiensis, Kingdom of Saudi Arabia. Emerging Infectious Diseases, 8(12), 1492–1494. [Google Scholar]
  113. Mint Lekweiry K, Ould Ahmedou Salem MS, Ould Brahim K, Ould Lemrabott MA, Brengues C, Faye O, Simard F, Ould Mohamed Salem Boukhary A. 2015. Aedes aegypti (Diptera: Culicidae) in Mauritania: first report on the presence of the Arbovirus mosquito vector in Nouakchott. Journal of Medical Entomology, 52(4), 730–733. [Google Scholar]
  114. Morales NS, Fernández IC, Baca-González V. 2017. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ, 5, e3093. [Google Scholar]
  115. O’Donnell KL, Bixby MA, Morin KJ, Bradley DS, Vaughan JA. 2017. Potential of a Northern population of Aedes vexans (Diptera: Culicidae) to transmit Zika Virus. Journal of Medical Entomology, 54(5), 1354–1359. [Google Scholar]
  116. Orshan L, Bin H, Schnur H, Kaufman A, Valinsky A, Shulman L, Weiss L, Mendelson E, Pener H. 2008. Mosquito vectors of West Nile fever in Israel. Journal of Medical Entomology, 45(5), 939–947. [Google Scholar]
  117. Osorio-Olvera L, Lira-Noriega A, Soberón J, Peterson AT, Falconi M, Contreras-Díaz RG, Martínez-Meyer E, Barve V, Barve N. 2020. ntbox: an R package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 11, 1199–1206. [Google Scholar]
  118. Osorio-Olvera L, Vijay B, Narayani B, Jorge S, Manuel F. 2018. ntbox: from getting biodiversity data to evaluating species distribution models in a friendly GUI environment. R package version 0.2.5.4. [cited 2019 10/10]. Available from: https://github.com/luismurao/ntbox. [Google Scholar]
  119. Pearson RG, Raxworthy CJ, Nakamura M, Townsend PA. 2007. Original Article: predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117. [Google Scholar]
  120. Peterson AT, Papeş M, Soberón J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72. [Google Scholar]
  121. Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. [Google Scholar]
  122. Pilaski J, Mackenstein H. 1985. Isolation of Tahyna virus from mosquitoes in 2 different European natural foci. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene. 1. Abt. Originale B Hygiene, 180(4), 394–420. [Google Scholar]
  123. Powers AM. 2016. Epidemiological History of Chikungunya Virus, in Chikungunya Virus: Advances in Biology, Pathogenesis, and Treatment, Okeoma CM, Editor. Springer International Publishing: Cham. p. 33–44. [Google Scholar]
  124. Puggioli A, Bonilauri P, Calzolari M, Lelli D, Carrieri M, Urbanelli S, Pudar D, Bellini R. 2017. Does Aedes albopictus (Diptera: Culicidae) play any role in Usutu virus transmission in Northern Italy? Experimental oral infection and field evidences. Acta Tropica, 172, 192–196. [Google Scholar]
  125. Qiao H, Peterson AT, Campbell LP, Soberón J, Ji L, Escobar LE. 2016. NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39(8), 805–813. [Google Scholar]
  126. Radosavljevic A, Anderson RP. 2014. Making better Maxent models of species distribu-tions: complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629–643. [Google Scholar]
  127. Ravanini P, Huhtamo E, Ilaria V, Crobu MG, Nicosia AM, Servino L, Rivasi F, Allegrini S, Miglio U, Magri A, Minisini R, Vapalahti O, Boldorini R. 2012. Japanese encephalitis virus RNA detected in Culex pipiens mosquitoes in Italy. Eurosurveillance, 17(28), 20221. [Google Scholar]
  128. Reynolds ES, Hart CE, Hermance ME, Brining DL, Thangamani S. 2017. An overview of animal models for arthropod-borne viruses. Comparative Medicine, 67(3), 232–241. [Google Scholar]
  129. Richard V, Paoaafaite T, Cao-Lormeau VM. 2016. Vector competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus. PLoS Neglected Tropical Diseases, 10(9), e0005024. [Google Scholar]
  130. Robert V, Gunay F, Le Goff G, Philippe B, Șuleșco T, Khalin A, Medlock J, Kampen H, Petrić D, Schaffner F. 2019. Distribution chart for Euro-Mediterranean mosquitoes (western Palaearctic region). Journal of the European Mosquito Control Association, 37, 1–28. [Google Scholar]
  131. Roehrig JT. 2013. West Nile virus in the United States – a historical perspective. Viruses, 5(12), 3088–3108. [Google Scholar]
  132. Roiz D, Ruiz S, Soriguer R, Figuerola J. 2014. Climatic effects on mosquito abundance in Mediterranean wetlands. Parasites & Vectors, 7, 333. [Google Scholar]
  133. Ruiz-Arrondo I, McMahon BJ, Hernández-Triana LM, Santibañez P, Portillo A, Oteo JA. 2019. Surveillance of Mosquitoes (Diptera, Culicidae) in a Northern Central Region of Spain: implications for the medical community. Frontiers in Veterinary Science, 6, 86. [Google Scholar]
  134. Severini F, Boccolini D, Fortuna C, Di Luca M, Toma L, Amendola A, Benedetti E, Minelli G, Romi R, Venturi G, Rezza G, Remoli ME. 2018. Vector competence of Italian Aedes albopictus populations for the Chikungunya Virus (E1–226V). PLoS Neglected Tropical Diseases, 12(4), e0006435. [Google Scholar]
  135. Shcheglovitova M, Anderson RP. 2013. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecological Modelling, 269, 9–17. [Google Scholar]
  136. Simões MVP, Peterson AT, Hassall C. 2018. Utility and limitations of climate-matching approaches in detecting different types of spatial errors in biodiversity data. Insect Conservation and Diversity, 11(5), 407–414. [Google Scholar]
  137. Smartt CT, Stenn TMS, Chen TY, Teixeira MG, Queiroz EP, Souza Dos Santos L, Queiroz GAN, Ribeiro Souza K, Kalabric Silva L, Shin D, Tabachnick WJ. 2017. Evidence of Zika Virus RNA fragments in Aedes albopictus (Diptera: Culicidae) field-collected eggs from Camacari, Bahia, Brazil. Journal of Medical Entomology, 54(4), 1085–1087. [Google Scholar]
  138. Sudeep AB, Shil P. 2017. Aedes vittatus (Bigot) mosquito: an emerging threat to public health. Journal of Vector Borne Diseases, 54(4), 295–300. [Google Scholar]
  139. Tantely LM, Boyer S, Fontenille D. 2015. A review of mosquitoes associated with Rift valley fever virus in Madagascar. American Journal of Tropical Medicine and Hygiene, 92(4), 722–729. [Google Scholar]
  140. Trari B. 2017. Les moustiques (Insectes, Diptères) du Maroc: atlas de répartition et études épidémiologiques. Thèse de doctorat d’état. Rabat, Morocco: Université Mohammed V Faculté des sciences de Rabat. [Google Scholar]
  141. Trari B, Dakki M, Harbach RE. 2017. An updated checklist of the Culicidae (Diptera) of Morocco, with notes on species of historical and current medical importance. Journal of Vector Ecology, 42(1), 94–104. [Google Scholar]
  142. Trari B, Dakki M, Himmi O, el Agbani MA. 2003. Les moustiques (Diptera Culicidae) du Maroc. Revue bibliographique (1916–2001) et inventaire des espèces. Bulletin de la Société de Pathologie Exotique, 96(4), 329–334. [Google Scholar]
  143. Tsuda Y, Suwonkerd W, Chawprom S, Prajakwong S, Takagi M. 2006. Different spatial distribution of Aedes aegypti and Aedes albopictus along an urban-rural gradient and the relating environmental factors examined in three villages in northern Thailand. Journal of the American Mosquito Control Association, 22(2), 222–228. [Google Scholar]
  144. Tsuda Y, Takagi M. 2001. Survival and development of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae under a seasonally changing environment in Nagasaki, Japan. Environmental Entomology, 30, 855–860. [Google Scholar]
  145. Turell MJ, Presley SM, Gad AM, Cope SE, Dohm DJ, Morrill JC, Arthur RR. 1996. Vector competence of Egyptian mosquitoes for Rift Valley fever virus. American Journal of Tropical Medicine and Hygiene, 54(2), 136–139. [Google Scholar]
  146. Vazeille M, Jeannin C, Martin E, Schaffner F, Failloux AB. 2008. Chikungunya: a risk for Mediterranean countries? Acta Tropica, 105(2), 200–202. [Google Scholar]
  147. Veronesi R, Gentile G, Carrieri M, Maccagnani B, Stermieri L, Bellini R. 2012. Seasonal pattern of daily activity of Aedes caspius, Aedes detritus, Culex modestus, and Culex pipiens in the Po Delta of northern Italy and significance for vector-borne disease risk assessment. Journal of Vector Ecology, 37(1), 49–61. [Google Scholar]
  148. Versteirt V, Ducheyne E, Schaffner F, Hendrickx G. 2013. Systematic literature review on the geographic distribution of rift valley fever vectors in Europe and the neighbouring countries of the Mediterranean Basin. Supporting Publications 2013: EN-412. p. 59. [Google Scholar]
  149. Vialatte C. 1923. Contribution à la recherche de l’aire de dispersion de Stegomyia fasciata. Son existence à Marrakech. Archives de l’Institut Pasteur d’Algérie, 1, 688–690. [Google Scholar]
  150. Viamonte JMR, Ramirez A. 1946. Culicinos de la zona española de Marruecos. Revista de Sanidad e Higiene Pública, 20, 449–455. [Google Scholar]
  151. Warren D, Matzke N, Cardillo M, Baumgartner J, Beaumont L, Huron N, Simões M, Dinnage R. 2019. ENMTools (software package). [cited 2020 01-05]. Available from: https://github.com/danlwarren/ENMTools. [Google Scholar]
  152. Warren DL, Glor RE, Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607–611. [Google Scholar]
  153. WHO. 2016. WHO statement on the first meeting of the International Health Regulations 2005 (IHR 2005) Emergency Committee on Zika Virus and observed increase in neurological disorders and neonatal malformations. [cited 2020 10/09]. Available from: http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.