Open Access
Review Article
Issue
Parasite
Volume 28, 2021
Article Number 36
Number of page(s) 15
DOI https://doi.org/10.1051/parasite/2021033
Published online 12 April 2021
  1. Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. 2020. Opportunities and challenges in long-read sequencing data analysis. Genome Biology, 21, 1–16. [Google Scholar]
  2. Baig AM. 2015. Pathogenesis of amoebic encephalitis: are the amoebas being credited to an “inside job” done by the host immune response? Acta Tropica, 148, 72–76. [Google Scholar]
  3. Bartoszewska M, Opaliński Ł, Veenhuis M, van der Klei IJ. 2011. The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi. Biotechnology Letters, 33, 1921–1931. [Google Scholar]
  4. Bertelli C, Greub G. 2012. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. Frontiers in Cellular and Infection Microbiology, 2, 110. [Google Scholar]
  5. Booton GC, Visvesvara GS, Byers TJ, Kelly DJ, Fuerst PA. 2005. Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. Journal of Clinical Microbiology, 43, 1689–1693. [Google Scholar]
  6. Bouyer S, Rodier MH, Guillot A, Héchard Y. 2009. Acanthamoeba castellanii: proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation. Experimental Parasitology, 123, 90–94. [Google Scholar]
  7. Buret AG, Cacciò SM, Favennec L, Svärd S. 2020. Update on Giardia: highlights from the seventh International Giardia and Cryptosporidium Conference. Parasite, 27, 49. [EDP Sciences] [Google Scholar]
  8. Burri DC, Gottstein B, Zumkehr B, Hemphill A, Schürch N, Wittwer M, Müller N. 2012. Development of a high- versus low-pathogenicity model of the free-living amoeba Naegleria fowleri. Microbiology, 158, 2652–2660. [Google Scholar]
  9. Caumo KS, Monteiro KM, Ott TR, Maschio VJ, Wagner G, Ferreira HB, Rott MB. 2014. Proteomic profiling of the infective trophozoite stage of Acanthamoeba polyphaga. Acta Tropica, 140, 166–172. [Google Scholar]
  10. Chain PSG, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, Ali J, Birren B, Bruce DC, Buhay C, Cole JR, Ding Y, Dugan S, Field D, Garrity GM, Gibbs R, Graves T, Han CS, Harrison SH, Highlander S, Hugenholtz P, Khouri HM, Kodira CD, Kolker E, Kyrpides NC, Lang D, Lapidus A, Malfatti SA, Markowitz V, Metha T, Nelson KE, Parkhill J, Pitluck S, Qin X, Read TD, Schmutz J, Sozhamannan S, Sterk P, Strausberg RL, Sutton G, Thomson NR, Tiedje JM, Weinstock G, Wollam A, Detter JC. 2009. Genome project standards in a new era of sequencing consortium genomic standards consortium human microbiome project jumpstart NIH public access. Science, 326, 1–5. [Google Scholar]
  11. Chelkha N, Jardot P, Moussaoui I, Levasseur A, La Scola B, Colson P. 2020. Core gene-based molecular detection and identification of Acanthamoeba species. Scientific Reports, 10, 19–21. [Google Scholar]
  12. Chelkha N, Levasseur A, Pontarotti P, Raoult D, La Scola B, Colson P. 2018. A phylogenomic study of Acanthamoeba polyphaga draft genome sequences suggests genetic exchanges with giant viruses. Frontiers in Microbiology, 9, 1–14. [Google Scholar]
  13. Chen Z, Erickson DL, Meng J. 2020. Benchmarking long-read assemblers for genomic analyses of bacterial pathogens using oxford nanopore sequencing. International Journal of Molecular Sciences, 21, 1–27. [Google Scholar]
  14. Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Heng Tan C, Hutchins AP, Weinmeier T, Rattei T, Chu JSC, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu C-H, Tang P, Hegemann P, Fromm H, Raoult D, Greub G, Miranda-Saavedra D, Chen N, Nash P, Ginger ML, Horn M, Schaap P, Caler L, Loftus BJ. 2013. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 14, R11. [Google Scholar]
  15. Corsaro D, Venditti D. 2010. Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitology Research, 107, 233–238. [Google Scholar]
  16. Cuadrat RRC, Da Serra Cruz SM, Tschoeke DA, Silva E, Tosta F, Jucá H, Jardim R, Campos MLM, Mattoso M, Dávila AMR. 2014. An orthology-based analysis of pathogenic protozoa impacting global health: An improved comparative genomics approach with prokaryotes and model eukaryote orthologs. OMICS A Journal of Integrative Biology, 18, 524–538. [Google Scholar]
  17. Detering H, Aebischer T, Dabrowski PW, Radonic A. 2015. First draft genome sequence of Balamuthia mandrillaris, the causative agent of amoebic encephalitis. Genome Announcement, 3, 10–11. [Google Scholar]
  18. Diesend J, Kruse J, Hagedorn M, Hammann C. 2018. Amoebae, giant viruses, and virophages make up a complex, multilayered threesome. Frontiers in Cellular and Infection Microbiology, 7, 527. [Google Scholar]
  19. Dominguez Del Angel V, Hjerde E, Sterck L, Capella-Gutierrez S, Notredame C, Vinnere Pettersson O, Amselem J, Bouri L, Bocs S, Klopp C, Gibrat JF, Vlasova A, Leskosek BL, Soler L, Binzer-Panchal M, Lantz H. 2018. Ten steps to get started in genome assembly and annotation. F1000Research, 7, ELIXIR-148. [Google Scholar]
  20. Elsheikha HM, Siddiqui R, Khan NA. 2020. Drug discovery against Acanthamoeba infections: Present knowledge and unmet needs. Pathogens, 9, 1–17. [Google Scholar]
  21. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC. 2010. The Genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell, 140, 631–642. [Google Scholar]
  22. Fuerst. 2020. Acanthamoeba and Free-Living Amoebae: The Molecular Analysis and Understanding of Acanthamoeba and Related Forms, 2020. Available online: https://u.osu.edu/acanthamoeba/ (accessed on January 2021). [Google Scholar]
  23. Fuerst PA, Booton GC. 2020. Species, sequence types and alleles: dissecting genetic variation in Acanthamoeba. Pathogens, 9, 1–34. [Google Scholar]
  24. Fuerst PA, Booton GC, Crary M. 2015. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba. Journal of Eukaryotic Microbiology, 62, 69–84. [Google Scholar]
  25. Geballa-Koukoulas K, Boudjemaa H, Andreani J, La Scola B, Blanc G. 2020. Comparative genomics unveils regionalized evolution of the faustovirus genomes. Viruses, 12, 1–16. [Google Scholar]
  26. Di Genova A, Buena-Atienza E, Ossowski S, Sagot M-F. 2020. Efficient hybrid de novo assembly of human genomes with WENGAN. Nature Biotechnology, 1–9. [Google Scholar]
  27. Golicz AA, Batley J, Edwards D. 2016. Towards plant pangenomics. Plant Biotechnology Journal, 14, 1099–1105. [Google Scholar]
  28. González-Robles A, González-Lázaro M, Lagunes-Guillén AE, Omaña-Molina M, Lares-Jiménez LF, Lares-Villa F, Martínez-Palomo A. 2020. Ultrastructural, cytochemical and comparative genomic evidence of peroxisomes in three genera of pathogenic free-living amoebae, including the first morphological data for the presence of this organelle in Heteroloboseans. Genome Biology and Evolution, 12, 1734–1750. [Google Scholar]
  29. Greninger AL, Messacar K, Dunnebacke T, Naccache SN, Federman S, Bouquet J, Mirsky D, Nomura Y, Yagi S, Glaser C, Vollmer M, Press CA, Kleinschmidt-DeMasters BK, Dominguez SR, Chiu CY. 2015. Clinical metagenomic identification of Balamuthia mandrillaris encephalitis and assembly of the draft genome: the continuing case for reference genome sequencing. Genome Medicine, 7, 1–14. [Google Scholar]
  30. Griesemer M, Kimbrel JA, Zhou CE, Navid A, D’Haeseleer P. 2018. Combining multiple functional annotation tools increases coverage of metabolic annotation. BMC Genomics, 19, 1–11. [Google Scholar]
  31. Hardison R. 2003. Comparative genomics. PLoS Biology, 1, e58. [Google Scholar]
  32. Hasni I, Andréani J, Colson P, La Scola B. 2020. Description of virulent factors and horizontal gene transfers of keratitis-associated amoeba Acanthamoeba triangularis by genome analysis. Pathogens, 9, 217. [Google Scholar]
  33. Hasni I, Chelkha N, Baptiste E, Mameri MR, Lachuer J, Plasson F, Colson P, La Scola B. 2019. Investigation of potential pathogenicity of Willaertia magna by investigating the transfer of bacteria pathogenicity genes into its genome. Scientific Reports, 9, 1–12. [Google Scholar]
  34. Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, Morgan MJ, Tsaousis AD, Velle K, Vargová R, Rodrigo Najle S, MacIntyre G, Muller N, Wittwer M, Zysset-Burri DC, Elias M, Slamovits C, Weirauch M, Fritz-Laylin L, Marciano-Cabral F, Puzon GJ, Walsh T, Chiu C, Dacks JB. 2020. A comparative ‘omics approach to candidate pathogenicity factor discovery in the brain-eating amoeba Naegleria fowleri. Molecular Parasitology, in press, https://doi.org/10.1101/2020.01.16.908186. [Google Scholar]
  35. Herman EK, Greninger AL, Visvesvara GS, Marciano-Cabral F, Dacks JB, Chiu CY. 2014. The mitochondrial genome and a 60-kb Nuclear DNA segment from Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis. Journal of Eukaryotic Microbiology, 60, 179–191. [Google Scholar]
  36. Hewett MK, Robinson BS, Monis PT, Saint CP. 2003. Identification of a new Acanthamoeba 18S rRNA gene sequence type, corresponding to the species Acanthamoeba jacobsi Sawyer, Nerad and Visvesvara, 1992 (Lobosea: Acanthamoebidae). Acta Protozoologica, 42, 325–329. [Google Scholar]
  37. Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M. 1999. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environmental Microbiology, 1, 357–367. [Google Scholar]
  38. Illumina. 2014. Estimating sequencing coverage. Technical Note: Sequencing. p. 2–3. [Google Scholar]
  39. Jamerson M, Schmoyer JA, Park J, Marciano-Cabral F, Cabral GA. 2017. Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis. Microbiology, 163, 322–332. [Google Scholar]
  40. De Jonckheere JF. 2014. What do we know by now about the genus Naegleria? Experimental Parasitology, 145, S2–S9. [Google Scholar]
  41. De Jonckheere JF. 2011. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infection, Genetics and Evolution, 11, 1520–1528. [Google Scholar]
  42. Kalyatanda G, Rand K, Lindner MS, Hong DK, Sait Albayram M, Gregory J, Kresak J, Ibne KMA, Cope JR, Roy S, Gary JM, Reddy V, Ahmed AA. 2020. Rapid, non-invasive diagnosis of Balamuthia mandrillaris encephalitis by a plasma-based next generation sequencing test. Open Forum Infectious Diseases, 7, ofaa189. [Google Scholar]
  43. Karlyshev AV. 2019. Remarkable features of mitochondrial DNA of Acanthamoeba polyphaga Linc Ap-1, revealed by whole-genome sequencing. Microbiology Resource Announcements, 8, e00430-19. [Google Scholar]
  44. Khan NA. 2006. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiology Reviews, 30, 564–595. [Google Scholar]
  45. Król-Turmińska K, Olender A. 2017. Human infections caused by free-living amoebae. Annals of Agricultural and Environmental Medicine, 24, 254–260. [Google Scholar]
  46. Lee DC, Fiester SE, Madeline LA, Fulcher JW, Ward ME, Schammel CMG, Hakimi RK. 2020. Acanthamoeba spp. and Balamuthia mandrillaris leading to fatal granulomatous amebic encephalitis. Forensic Science, Medicine, and Pathology, 16, 171–176. [Google Scholar]
  47. Liechti N, Schürch N, Bruggmann R, Wittwer M. 2019. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Scientific Reports, 9, 1–10. [Google Scholar]
  48. Liechti N, Schürch N, Bruggmann R, Wittwer M. 2018. The genome of Naegleria lovaniensis, the basis for a comparative approach to unravel pathogenicity factors of the human pathogenic amoeba N. fowleri. BMC Genomics, 19, 1–11. [Google Scholar]
  49. Liu D, Hunt M, Tsai IJ. 2018. Inferring synteny between genome assemblies: a systematic evaluation. BMC Bioinformatics, 19, 1–13. [Google Scholar]
  50. Magnet A, Henriques-Gil N, Galván-Diaz AL, Izquiedo F, Fenoy S, Del Aguila C. 2014. Novel Acanthamoeba 18S rRNA gene sequence type from an environmental isolate. Parasitology Research, 113, 2845–2850. [Google Scholar]
  51. Maschio VJ, Virginio VG, Ferreira HB, Rott MB. 2018. Comparative proteomic analysis of soluble and surface-enriched proteins from Acanthamoeba castellanii trophozoites. Molecular and Biochemical Parasitology, 225, 47–53. [Google Scholar]
  52. Maumus F, Blanc G. 2016. Study of gene trafficking between Acanthamoeba and giant viruses suggests an undiscovered family of amoeba-infecting viruses. Genome Biology and Evolution, 8, 3351–3363. [Google Scholar]
  53. Moseman EA. 2020. Battling brain-eating amoeba: enigmas surrounding immunity to Naegleria fowleri. PLoS Pathogens, 16, 1–7. [Google Scholar]
  54. Mougari S, Sahmi-Bounsiar D, Levasseur A, Colson P, La Scola B. 2019. Virophages of giant viruses: an update at eleven. Viruses, 11, 1–28. [Google Scholar]
  55. Mungroo MR, Khan NA, Siddiqui R. 2019. Naegleria fowleri: diagnosis, treatment options and pathogenesis. Expert Opinion on Orphan Drugs, 7, 67–80. [Google Scholar]
  56. Mungroo MR, Khan NA, Siddiqui R. 2020. Balamuthia mandrillaris: pathogenesis, diagnosis, and treatment. Expert Opinion on Orphan Drugs, 8, 111–119. [Google Scholar]
  57. Nalbantoglu S, Karadag A. 2019. Introductory chapter: insight into the OMICS technologies and molecular medicine. IntechOpen. https://doi.org/10.5772/intechopen.86450. [Google Scholar]
  58. Nuprasert W, Putaporntip C, Pariyakanok L, Jongwutiwes S. 2010. Identification of a Novel T17 Genotype of Acanthamoeba from environmental isolates and t10 genotype causing keratitis in Thailand. Journal of Clinical Microbiology, 48, 4636–4640. [CrossRef] [Google Scholar]
  59. Ong TYY, Khan NA, Siddiqui R. 2017. Brain-eating amoebae: predilection sites in the brain and disease outcome. Journal of Clinical Microbiology, 55, 1989–1997. [CrossRef] [Google Scholar]
  60. Page FC. 1974. Rosculus ithacus Hawes, 1963 (Amoebida, Flabellidae) and the amphizoic tendency in amoebae. Acta Protozoologica, 13, 143–154. [Google Scholar]
  61. Pereira R, Oliveira J, Sousa M. 2020. Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. Journal of Clinical Medicine, 9, 132. [CrossRef] [Google Scholar]
  62. Peripheral H, Mononuclear B, Monocyte- H. 2016. Acanthamoeba castellanii genotype T4 stimulates the production of Interleukin-10 as well as proinflammatory cytokines in THP-1 cells. Infection and Immunity, 84, 2953–2962. [CrossRef] [Google Scholar]
  63. Phan IQ, Rice CA, Craig J, Noorai RE, Subramanian S, Tillery L, Barrett LK, Shankar V, Morris C, Van Voorhis WC, Kyle DE, Myler PJ. 2020. The transcriptome of Balamuthia mandrillaris trophozoites for structure-based drug design, in press, https://doi.org/10.1101/2020.06.29.178905. [Google Scholar]
  64. Qvarnstrom Y, Nerad TA, Visvesvara GS. 2013. Characterization of a new pathogenic Acanthamoeba species, A. byersi n. sp., isolated from a human with fatal amoebic encephalitis. Journal of Eukaryotic Microbiology, 60, 626–633. [CrossRef] [Google Scholar]
  65. Régnacq M, Voisin P, Héchard Y, Bergès T, Braquart-Varnier C, Samba-Louaka A. 2016. Identification of Atg8 from Acanthamoeba castellanii by genetic complementation in Saccharomyces cerevisiae. Molecular and Biochemical Parasitology, 210, 55–57. [CrossRef] [Google Scholar]
  66. Richard A, Louise PH. 2011. “Omic” technologies: genomics, transcriptomics, proteomics and metabolomics. Obstetrician & Gynaecologist, 13, 189–195. [CrossRef] [Google Scholar]
  67. Scheid P. 2018. Free-living amoebae as human parasites and hosts for pathogenic microorganisms. Proceedings, 2, 692. [CrossRef] [Google Scholar]
  68. Schuster FL, Visvesvara GS. 2004. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. International Journal for Parasitology, 34, 1001–1027. [CrossRef] [Google Scholar]
  69. Shabardina V, Kischka T, Kmita H, Suzuki Y, Makałowski W. 2018. Environmental adaptation of Acanthamoeba castellanii and Entamoeba histolytica at genome level as seen by comparative genomic analysis. International Journal of Biological Sciences, 14, 306–320. [CrossRef] [Google Scholar]
  70. Stothard DR, Schroeder-Diedrich JM, Awwad MH, Gast RJ, Ledee DR, Rodriguez-Zaragoza S, Dean CL, Fuerst PA, Byers TJ. 1998. The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. Journal of Eukaryotic Microbiology, 45, 45–54. [CrossRef] [Google Scholar]
  71. Szentmáry N, Daas L, Shi L, Laurik KL, Lepper S, Milioti G, Seitz B. 2019. Acanthamoeba keratitis – Clinical signs, differential diagnosis and treatment. Journal of Current Ophthalmology, 31, 16–23. [CrossRef] [Google Scholar]
  72. Tice AK, Shadwick LL, Fiore-Donno AM, Geisen S, Kang S, Schuler GA, Spiegel FW, Wilkinson KA, Bonkowski M, Dumack K, Lahr DJG, Voelcker E, Clauß S, Zhang J, Brown MW. 2016. Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Amoebozoa) and identification of a novel life cycle type within the group. Biology Direct, 11, 1–21. [CrossRef] [Google Scholar]
  73. Wojtkowska M, Buczek D, Stobienia O, Karachitos A, Antoniewicz M, Slocinska M, Makałowski W, Kmita H. 2015. The TOM complex of Amoebozoans: the cases of the amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. Protist, 166, 349–362. [CrossRef] [Google Scholar]
  74. Zhang L, Wu M, Hu B, Chen H, Pan J-R, Ruan W, Yao L. 2018. Identification and molecular typing of Naegleria fowleri from a patient with primary amebic meningoencephalitis in China. International Journal of Infectious Diseases, 72, 28–33. [CrossRef] [Google Scholar]
  75. Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, Gottstein B, Wittwer M. 2014. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics, 15, 496. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.