Open Access
Research Article
Issue
Parasite
Volume 28, 2021
Article Number 38
Number of page(s) 14
DOI https://doi.org/10.1051/parasite/2021036
Published online 14 April 2021
  1. Akbari M, Oryan A, Hatam G. 2017. Application of nanotechnology in treatment of leishmaniasis: a review. Acta Tropica, 172, 86–90. [Google Scholar]
  2. Alonso-Garrido M, Manyes L, Pralea IE, Iuga CA. 2020. Mitochondrial proteomics profile points oxidative phosphorylation as main target for beauvericin and enniatin B mixture. Food and Chemical Toxicology, 141, 111432. [Google Scholar]
  3. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, WHO Leishmaniasis Control Team. 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 7, e35671. [Google Scholar]
  4. Andrade-Neto VV, Cunha-Junior EF, Santos Faioes V, Pereira TM, Silva RL, Leon LL, Torres-Santos EC. 2018. Leishmaniasis treatment: update of possibilities for drug repurposing. Frontiers in Bioscience, 23, 967–996. [Google Scholar]
  5. Antonia AL, Wang L, Ko DC. 2018. A real-time PCR assay for quantification of parasite burden in murine models of leishmaniasis. PeerJ, 6, e5905. [Google Scholar]
  6. Araújo IAC, Paula RC, Alves CL, Faria KF, Oliveira MM, Mendes GG, Dias EMFA, Ribeiro RR, Oliveira AB, Silva SMD. 2019. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Experimental Parasitology, 199, 67–73. [Google Scholar]
  7. Arruda CCP, Hardoim DJ, Rizk YS, Souza CSF, Valle TZ, Carvalho DB, Taniwaki NN, Baroni ACM, Calabrese KS. 2019. A triazole hybrid of neolignans as a potential antileishmanial agent by triggering mitochondrial dysfunction. Molecules, 25, 37. [Google Scholar]
  8. Askari A. 2019. The sodium pump and digitalis drugs: dogmas and fallacies. Pharmacology Research & Perspectives, 7, e00505. [Google Scholar]
  9. Bauman JL, Didomenico RJ, Galanter WL. 2006. Mechanisms, manifestations, and management of digoxin toxicity in the modern era. American Journal of Cardiovascular Drugs, 6, 77–86. [Google Scholar]
  10. Braga SS. 2019. Multi-target drugs active against leishmaniasis: a paradigm of drug repurposing. European Journal of Medicinal Chemistry, 183, 111660. [Google Scholar]
  11. Campbell TJ, MacDonald PS. 2003. Digoxin in heart failure and cardiac arrhythmias. Medical Journal of Australia, 179, 98–102. [Google Scholar]
  12. Carrión J, Nieto A, Iborra S, Iniesta V, Soto M, Folgueira C, Abanades DR, Requena JM, Alonso C. 2006. Immunohistological features of visceral leishmaniasis in BALB/c mice. Parasite Immunology, 28, 173–183. [Google Scholar]
  13. Chakravarty J, Sundar S. 2019. Current and emerging medications for the treatment of leishmaniasis. Expert Opinion on Pharmacotherapy, 20, 1251–1265. [Google Scholar]
  14. Chan EW, Wong SK, Chan HT. 2016. Apocynaceae species with antiproliferative and/or antiplasmodial properties: a review of ten genera. Journal of Integrative Medicine, 14, 269–284. [Google Scholar]
  15. Coelho EAF, Tavares CA, Carvalho FA, Chaves KF, Teixeira KN, Rodrigues RC, Charest H, Matlashewski G, Gazzinelli RT, Fernandes AP. 2003. Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infection and Immunity, 71, 3988–3994. [Google Scholar]
  16. Cortes S, Bruno-de-Sousa C, Morais T, Lago J, Campino L. 2020. Potential of the natural products against leishmaniasis in Old World: a review of in vitro studies. Pathogens and Global Health, 27, 1–13. [Google Scholar]
  17. Critchley JA, Critchley LA. 1997. Digoxin toxicity in chronic renal failure: treatment by multiple dose activated charcoal intestinal dialysis. Human & Experimental Toxicology, 16, 733–735. [Google Scholar]
  18. Dayakar A, Chandrasekaran S, Kuchipudi SV, Kalangi SK. 2019. Cytokines: key determinants of resistance or disease progression in visceral leishmaniasis: opportunities for novel diagnostics and immunotherapy. Frontiers in Immunology, 10, 670. [Google Scholar]
  19. Dorlo TP, Balasegaram M, Beijnen JH, Vries PJ. 2012. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67, 2576–2597. [Google Scholar]
  20. Duarte MC, Lage LM, Lage DP, Martins VT, Carvalho AM, Roatt BM, Menezes-Souza D, Tavares CA, Alves RJ, Barichello JM, Coelho EA. 2016. Treatment of murine visceral leishmaniasis using an 8-hydroxyquinoline-containing polymeric micelle system. Parasitology International, 65, 728–736. [Google Scholar]
  21. Eid SY, El-Readi MZ, Wink M. 2012. Digitonin synergistically enhances the cytotoxicity of plant secondary metabolites in cancer cells. Phytomedicine, 19, 1307–1314. [Google Scholar]
  22. Engwerda CR, Kaye PM. 2000. Organ-specific immune responses associated with infectious disease. Immunology Today, 21, 73–78. [Google Scholar]
  23. Espuelas S, Legrand P, Loiseau PM, Bories C, Barratt G, Irache JM. 2000. In vitro reversion of amphotericin B resistance in Leishmania donovani by Poloxamer 188. Antimicrobial and Agents Chemotherapy, 44, 2190–2192. [Google Scholar]
  24. Fidalgo LM, Gille L. 2011. Mitochondria and trypanosomatids: targets and drugs. Pharmaceutical Research, 28, 2758–2770. [Google Scholar]
  25. Freitas CS, Oliveira-da-Silva JA, Lage DP, Costa RR, Mendonça DVC, Martins VT, Reis TAR, Antinarelli LMR, Machado AS, Tavares GSV, Ramos FF, Coelho VTS, Brito RCF, Ludolf F, Chávez-Fumagalli MA, Roatt BM, Ramos GS, Munkert J, Ottoni FM, Campana PRV, Humbert MV, Coimbra ES, Braga FC, Pádua RM, Coelho EAF. 2021. Digitoxigenin presents an effective and selective antileishmanial action against Leishmania infantum and is a potential therapeutic agent for visceral leishmaniasis. Parasitology Research, 120, 321–335. [Google Scholar]
  26. Gheorghiade M, Harinstein ME, Filippatos GS. 2009. Digoxin for the treatment of chronic and acute heart failure syndromes. Acute Cardiac Care, 11, 83–87. [Google Scholar]
  27. Gurel E, Karvar S, Yucesan B, Eker I, Sameeullah M. 2017. An overview of cardenolides in digitalis – more than a cardiotonic compound. Current Pharmaceutical Design, 23, 5104–5114. [Google Scholar]
  28. Granato JT, Santos JA, Calixto SL, Prado da Silva N, da Silva Martins J, Silva AD, Coimbra ES. 2018. Novel steroid derivatives: synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies. Biomedicine & Pharmacotherapy, 106, 1082–1090. [Google Scholar]
  29. Jagielska J, Salguero G, Schieffer B, Bavendiek U. 2009. Digitoxin elicits anti-inflammatory and vasoprotective properties in endothelial cells: therapeutic implications for the treatment of atherosclerosis? Atherosclerosis, 206, 390–396. [Google Scholar]
  30. Joshi J, Kaur S. 2014. Studies on the protective efficacy of second-generation vaccine along with standard antileishmanial drug in Leishmania donovani infected BALB/c mice. Parasitology, 141, 554–562. [Google Scholar]
  31. Kedzierski L, Evans KJ. 2014. Immune responses during cutaneous and visceral leishmaniasis. Parasitology, 30, 1–19. [Google Scholar]
  32. Keenan SM, DeLisle RK, Welsh WJ, Paula S, Ball WJ Jr. 2005. Elucidation of the Na+, K+-ATPase digitalis binding site. Journal of Molecular Graphics and Modelling, 23, 465–475. [Google Scholar]
  33. Kevric I, Cappel MA, Keeling JH. 2015. New World and Old World Leishmania infections: a practical review. Dermatologic Clinics, 33, 579–593. [Google Scholar]
  34. Lage LM, Barichello JM, Lage DP, Mendonça DV, Carvalho AM, Rodrigues MR, Menezes-Souza D, Roatt BM, Alves RJ, Tavares CA, Coelho EA, Duarte MC. 2016. An 8-hydroxyquinoline-containing polymeric micelle system is effective for the treatment of murine tegumentary leishmaniasis. Parasitology Research, 115, 4083–4095. [Google Scholar]
  35. López-Arencibia A, Martín-Navarro C, Sifaoui I, Reyes-Batlle M, Wagner C, Lorenzo-Morales J, Maciver SK, Piñero JE. 2017. Perifosine mechanisms of action in Leishmania species. Antimicrobial Agents and Chemotherapy, 61, e02127-16. [Google Scholar]
  36. Melby PC, Yang YZ, Cheng J, Zhao W. 1998. Regional differences in the cellular immune response to experimental cutaneous or visceral infection with Leishmania donovani. Infection and Immunity, 66, 18–27. [Google Scholar]
  37. Mendonça DVC, Lage LMR, Lage DP, Chávez-Fumagalli MA, Ludolf F, Roatt BM, Menezes-Souza D, Faraco AA, Castilho RO, Tavares CA, Barichello JM, Duarte MC, Coelho EA. 2016. Poloxamer 407 (Pluronic® F127)-based polymeric micelles for amphotericin B: in vitro biological activity, toxicity and in vivo therapeutic efficacy against murine tegumentary leishmaniasis. Experimental Parasitology, 169, 34–42. [Google Scholar]
  38. Mendonça DVC, Martins VT, Lage DP, Dias DS, Ribeiro PAF, Carvalho AMRS, Dias ALT, Miyazaki CK, Menezes-Souza D, Roatt BM, Tavares CAP, Barichello JM, Duarte MC, Coelho EAF. 2018. Comparing the therapeutic efficacy of different amphotericin B-carrying delivery systems against visceral leishmaniasis. Experimental Parasitology, 186, 24–35. [Google Scholar]
  39. Mendonça DVC, Tavares GSV, Lage DP, Soyer TG, Carvalho LM, Dias DS, Ribeiro PAF, Ottoni FM, Antinarelli LMR, Vale DL, Ludolf F, Duarte MC, Coimbra ES, Chávez-Fumagalli MA, Roatt BM, Menezes-Souza D, Barichello JM, Alves RJ, Coelho EAF. 2019. In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection. Biomedicine & Pharmacotherapy, 109, 779–787. [Google Scholar]
  40. Menna-Barreto RF, Castro SL. 2014. The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. Biomed Research International, 2014, 614014. [Google Scholar]
  41. Mijatovic T, Kiss R. 2013. Cardiotonic steroids-mediated Na+/K+-ATPase targeting could circumvent various chemoresistance pathways. Planta Medica, 79, 189–198. [Google Scholar]
  42. Mougneau E, Bihl F, Glaichenhaus N. 2011. Cell biology and immunology of Leishmania. Immunology Review, 240, 286–296. [Google Scholar]
  43. Oliveira DM, Costa MA, Chavez-Fumagalli MA, Valadares DG, Duarte MC, Costa LE, Martins VT, Gomes RF, Melo MN, Soto M, Tavares CA, Coelho EA. 2012. Evaluation of parasitological and immunological parameters of Leishmania chagasi infection in BALB/c mice using different doses and routes of inoculation of parasites. Parasitology Research, 110, 1277–1285. [Google Scholar]
  44. Ortega V, Giorgio S, Paula E. 2017. Liposomal formulations in the pharmacological treatment of leishmaniasis: a review. Journal of Liposome Research, 27, 234–248. [Google Scholar]
  45. Pandey K, Ravidas V, Siddiqui NA, Sinha SK, Verma RB, Singh TP, Dhariwal AC, Das Gupta RK, Das P. 2016. Pharmacovigilance of miltefosine in treatment of visceral leishmaniasis in endemic areas of Bihar, India. American Journal of Tropical Medicine and Hygiene, 95, 1100–1105. [Google Scholar]
  46. Patel CN, Kumar SP, Modi KM, Soni MN, Modi NR, Pandya HA. 2019. Cardiotonic steroids as potential Na(+)/K(+)-ATPase inhibitors – a computational study. Journal of Receptors and Signal Transduction, 39, 226–234. [Google Scholar]
  47. Pérez-Victoria FJ, Sánchez-Cañete MP, Seifert K, Croft SL, Sundar S, Castanys S, Gamarro F. 2006. Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resistance Updates, 9, 26–39. [Google Scholar]
  48. Perron GG, Kryazhimskiy S, Rice DP, Buckling A. 2012. Multidrug therapy and evolution of antibiotic resistance: when order matters. Applied and Environmental Microbiology, 78, 6137–6142. [Google Scholar]
  49. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. 2017. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Neglected Tropical Diseases, 11, e0006052. [Google Scholar]
  50. Ribeiro TG, Franca JR, Fuscaldi LL, Santos ML, Duarte MC, Lage PS, Martins VT, Costa LE, Fernandes SO, Cardoso VN, Castilho RO, Soto M, Tavares CA, Faraco AA, Coelho EA, Chávez-Fumagalli MA. 2014. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. International Journal of Nanomedicine, 9, 5341–5353. [Google Scholar]
  51. Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TP, Beijnen JH, Vanaerschot M, Decuypere S, Dhakal SS, Das ML, Karki P, Singh R, Boelaert M, Dujardin JC. 2013. Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clinical Infectious Diseases, 56, 1530–1538. [Google Scholar]
  52. Scalese MJ, Salvatore DJ. 2017. Role of digoxin in atrial fibrillation. Journal of Pharmacy Practice, 30, 434–440. [Google Scholar]
  53. Sen R, Chatterjee M. 2011. Plant derived therapeutics for the treatment of leishmaniasis. Phytomedicine, 18, 1056–1069. [Google Scholar]
  54. Singh PK, Pawar VK, Jaiswal AK, Singh Y, Srikanth CH, Chaurasia M, Bora HK, Raval K, Meher JG, Gayen JR, Dube A, Chourasia MK. 2017. Chitosan coated Pluronic F127 micelles for effective delivery of amphotericin B in experimental visceral leishmaniasis. International Journal of Biological Macromolecules, 105, 1220–1231. [Google Scholar]
  55. Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. 2014. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. International Journal of Hyperthermia, 30, 513–523. [Google Scholar]
  56. Slingerland M, Cerella C, Guchelaar HJ, Diederich M, Gelderblom H. 2013. Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Investigational New Drugs, 31, 1087–1094. [Google Scholar]
  57. Sousa JKT, Antinarelli LMR, Mendonça DVC, Lage DP, Tavares GSV, Dias DS, Ribeiro PAF, Ludolf F, Coelho VTS, Oliveira-da-Silva JA, Perin L, Oliveira BA, Alvarenga DF, Chávez-Fumagalli MA, Brandão GC, Nobre V, Pereira GR, Coimbra ES, Coelho EAF. 2019. A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis. Parasitology International, 73, 101966. [Google Scholar]
  58. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. 2019. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity, 2019, 5080843. [Google Scholar]
  59. Sun W, Zhang H, Guo J, Zhang X, Zhang L, Li C, Zhang L. 2016. Comparison of the efficacy and safety of different ace inhibitors in patients with chronic heart failure: a PRISMA-compliant network meta-analysis. Medicine (Baltimore), 95, e2554. [Google Scholar]
  60. Sundar S, Singh A, Rai M, Prajapati VK, Singh AK, Ostyn B, Boelaert M, Dujardin JC, Chakravarty J. 2012. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clinical Infectious Diseases, 55, 543–550. [Google Scholar]
  61. Sundar S, Singh A. 2016. Recent developments and future prospects in the treatment of visceral leishmaniasis. Therapeutic Advances in Infectious Disease, 3, 98–109. [Google Scholar]
  62. Sundar S, Singh A. 2018. Chemotherapeutics of visceral leishmaniasis: present and future developments. Parasitology, 145, 481–489. [Google Scholar]
  63. Tavares GSV, Mendonça DVC, Lage DP, Granato JDT, Ottoni FM, Ludolf F, Chávez-Fumagalli MA, Duarte MC, Tavares CAP, Alves RJ, Coimbra ES, Coelho EAF. 2018. Antileishmanial activity, cytotoxicity and mechanism of action of clioquinol against Leishmania infantum and Leishmania amazonensis species. Basic & Clinical Pharmacology & Toxicology, 123, 236–246. [Google Scholar]
  64. Tavares GSV, Mendonça DVC, Pereira IAG, Oliveira-da-Silva JA, Ramos FF, Lage DP, Machado AS, Carvalho LM, Reis TAR, Perin L, Carvalho AMRS, Ottoni FM, Ludolf F, Freitas CS, Bandeira RS, Silva AM, Chávez-Fumagalli MA, Duarte MC, Menezes-Souza D, Alves RJ, Roatt BM, Coelho EAF. 2020. A clioquinol-containing Pluronic® F127 polymeric micelle system is effective in the treatment of visceral leishmaniasis in a murine model. Parasite, 27, 29. [EDP Sciences] [Google Scholar]
  65. Trinconi CT, Reimão JQ, Yokoyama-Yasunaka JK, Miguel DC, Uliana SR. 2014. Combination therapy with tamoxifen and amphotericin B in experimental cutaneous leishmaniasis. Antimicrobial Agents and Chemotherapy, 58, 2608–2613. [Google Scholar]
  66. Uliana SRB, Trinconi CT, Coelho AC. 2018. Chemotherapy of leishmaniasis: present challenges. Parasitology, 145, 464–480. [Google Scholar]
  67. World Health Organization. 2018. Leishmaniasis. http://www.who.int/topics/leishmaniasis/en/. Accessed data: 2 June 2018. [Google Scholar]
  68. Xu J, Guo Y, Sui T, Wang Q, Zhang Y, Zhang R, Wang M, Guan S, Wang L. 2017. Molecular mechanisms of anti-oxidant and anti-aging effects induced by convallatoxin in Caenorhabditis elegans. Free Radical Research, 51, 529–544. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.