Open Access
Volume 27, 2020
Article Number 66
Number of page(s) 22
Published online 24 November 2020
  1. Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Sabaj Pérez MH, Petry P. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58, 403–414. [CrossRef] [Google Scholar]
  2. Albrecht C, Wilke T. 2008. Ancient Lake Ohrid: biodiversity and evolution. Hydrobiologia, 615, 103–140. [CrossRef] [Google Scholar]
  3. Benovics M, Kičinjaová ML, Šimková A. 2017. The phylogenetic position of the enigmatic Balkan Aulopyge huegelii (Teleostei: Cyprinidae) from the perspective of host-specific Dactylogyrus parasites (Monogenea), with a description of Dactylogyrus omenti n. sp. Parasites and Vectors, 10, 547. [CrossRef] [Google Scholar]
  4. Benovics M, Desdevises Y, Vukić J, Šanda R, Šimková A. 2018. The phylogenetic relationships and species richness of host-specific Dactylogyrus parasites shaped by the biogeography of Balkan cyprinids. Scientific Reports, 8, 13006. [CrossRef] [PubMed] [Google Scholar]
  5. Bianco PG. 1988. Leuciscus cephalm (Linnaeus), with records of fingerling adult males, Leuciscus plemobipunctatus (Stephanidis) and their hybrids from western Greece. Journal of Fish Biology, 32, 1–16. [CrossRef] [Google Scholar]
  6. Bogutskaya NG, Zupančič P, Bogut I, Naseka AM. 2012. Two new freshwater fish species of the genus Telestes (Actinopterygii, Cyprinidae) from karst poljes in Eastern Herzegovina and Dubrovnik littoral (Bosnia and Herzegovina and Croatia). ZooKeys, 180, 53–80. [CrossRef] [Google Scholar]
  7. Brahimi A, Freyhof J, Henrard A, Libois R. 2017. Luciobarbus chelifensis and L. mascarensis, two new species from Algeria (Teleostei: Cyprinidae). Zootaxa, 4277, 32–50. [CrossRef] [PubMed] [Google Scholar]
  8. Buj I, Marčić Z, Caleta M, Šanda R, Geiger MF, Freyhof J, Machordom A, Vukić J. 2017. Ancient connections among the European rivers and watersheds revealed from the evolutionary history of the genus Telestes (Actinopterygii; Cypriniformes). PLoS One, 12, e0187366. [CrossRef] [PubMed] [Google Scholar]
  9. Buj I, Šanda R, Zogaris S, Freyhof J, Geiger MF, Vukić J. 2019. Cryptic diversity in Telestes pleurobipunctatus (Actinopterygii; Leuciscidae) as a consequence of historical biogeography in the Ionian freshwater ecoregion (Greece, Albania). Hydrobiologia, 835, 147–163. [CrossRef] [Google Scholar]
  10. Bush AO, Lafferty KD, Lotz JM, Shostak AW. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583. [CrossRef] [PubMed] [Google Scholar]
  11. Bychowsky BE. 1949. Monogenea from some fishes of Iran collected by academician E.N. Pavlovsky. Trudy Zoologicheskogo Instituta. Leningrad, 8, 870–878. [Google Scholar]
  12. Casal-López M, Perea S, Yahyaoui A, Doadrio I. 2015. Taxonomic review of the genus Luciobarbus Heckel, 1843 (Actinopterygii, Cyprinidae) from northwestern Morocco with the description of three new species. Graellsia, 71, e027. [CrossRef] [Google Scholar]
  13. Cribb TH, Chisholm LA, Bray RA. 2002. Diversity in the monogenea and digenea: Does lifestyle matter? International Journal for Parasitology, 32, 321–328. [CrossRef] [PubMed] [Google Scholar]
  14. Darriba D, Taboada GL, Doallo R, Posada D. 2012. JModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. [CrossRef] [Google Scholar]
  15. Doadrio I. 1994. Freshwater fish fauna of North Africa and its biogeography. Annals of the Royal Central African Museum (Zoology), 275, 21–34. [Google Scholar]
  16. Doadrio I, Casal-López M, Perea S, Yahyaoui A. 2016. Taxonomy of rheophilic Luciobarbus Heckel, 1842 (Actinopterygii, Cyprinidae) from Morocco with the description of two new species. Graellsia, 72, e039. [CrossRef] [Google Scholar]
  17. Dubut V, Fouquet A, Voisin A, Costedoat C, Chappaz R, Gilles A. 2012. From late miocene to holocene: processes of differentiation within the Telestes genus (Actinopterygii: Cyprinidae). PLoS One, 7, e34423. [CrossRef] [PubMed] [Google Scholar]
  18. Dupont F. 1989. Biogéographie historique des Dactylogyrus, monogènes parasites de poissons Cyprinidae dans la péninsule Balkanique. Biologia Gallo-Hellenica, 13, 145–152. [Google Scholar]
  19. Dupont F, Lambert A. 1986. Étude des communautés de Monogènes Dactylogyridae parasites des Cyprinidae du Lac Mikri Prespa (Nord de la Grèce). Description de trois nouvelles espèces chez un Barbus endémique: Barbus cyclolepis prespensis Karaman, 1924. Annales de Parasitologie Humaine et Comparée, 61, 597–616. [CrossRef] [Google Scholar]
  20. Economou AN, Giakoumi S, Vardakas L, Barbieri R, Stoumboudi MΤ, Zogaris S. 2007. The freshwater ichthyofauna of Greece – an update based on a hydrographic basin survey. Mediterranean Marine Science, 8, 91. [Google Scholar]
  21. Elvira B. 1997. Taxonomy of the genus Chondrostoma (Osteichthyes, Cyprinidae): an updated review. Folia Zoologica, 46, 1–14. [Google Scholar]
  22. Ergens R. 1969. The suitability of ammonium picrate-glycerin in preparing slides of lower Monogenoidea. Folia Parasitologica, 16, 320. [Google Scholar]
  23. Ergens R. 1970. The parasite fauna of fishes from Montenegro. I. Polyonchoinea (Monogenoidea) of some fishes of the Lakes Skadar and Veliko Crno. Pol’Oprivreda i Shumarstvo, 16, 1–44. [Google Scholar]
  24. Freyhof J, Lieckfeldt D, Bogutskaya NG, Pitra C, Ludwig A. 2006. Phylogenetic position of the Dalmatian genus Phoxinellus and description of the newly proposed genus Delminichthys (Teleostei: Cyprinidae). Molecular Phylogenetics and Evolution, 38, 416–425. [CrossRef] [PubMed] [Google Scholar]
  25. Fricke R, Eschmeyer WN, van der Laan R. 2020. Eschmeyer’s catalog of fishes: genera, species, references. Available on: [Google Scholar]
  26. Gante HF. 2011. Diversification of circum-Mediterranean barbels, in Changing Diversity in Changing Environment. Grillo O, Venora G, Editors. InTech Europe, Croatia: Rijeka. p. 283–298. [Google Scholar]
  27. García-Vásquez A, Shinn AP, Bron JE. 2012. Development of a light microscopy stain for the sclerites of Gyrodactylus von Nordmann, 1832 (Monogenea) and related genera. Parasitology Research, 110, 1639–1648. [CrossRef] [PubMed] [Google Scholar]
  28. Gibson DI, Timofeeva TA, Gerasev PI. 1996. A catalogue of the nominal species of the monogenean genus Dactylogyrus Diesing, 1850 and their host genera. Systematic Parasitology, 35, 3–48. [CrossRef] [Google Scholar]
  29. Glamuzina B, Bartulović V, Dulčić J, Conides AJ, Tutman P, Matić-Skoko S, Gavrilović A, Jug-Dujaković J, Hasković E, Ivanc A, Zovko N. 2007. Some biological characteristics of the endemic Neretvan nase, Chondrostoma knerii Heckel, 1843, in the Hutovo Blato wetlands (Bosnia and Herzegovina). Journal of Applied Ichthyology, 23, 221–225. [CrossRef] [Google Scholar]
  30. Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704. [CrossRef] [PubMed] [Google Scholar]
  31. Gussev AV. 1966. Some new species of Dactylogyrus from the European freshwater fishes. Folia Parasitologica, 13, 289–321. [Google Scholar]
  32. Gussev AV. 1985. Metazoan parasites. Part I. Key to parasites of freshwater fish of USSR, Vol. 2. Leningrad: Nauka. [Google Scholar]
  33. Gussev AV, Jalali B, Molnar K. 1993. Six new species of the genus Dactylogyrus Diesing, 1850 (Monogenea, Dactylogyridae) from Iranian freshwater cyprinid fishes. Zoosystematica Rossica, 2, 29–35. [Google Scholar]
  34. Hassouna N, Mithot B, Bachellerie JP. 1984. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Research, 12, 3563–3583. [CrossRef] [PubMed] [Google Scholar]
  35. International Commission on Zoological Nomenclature. 2012. Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. ZooKeys, 219, 1–10. [CrossRef] [Google Scholar]
  36. Jarkovský J, Morand S, Šimková A, Gelnar M. 2004. Reproductive barriers between congeneric monogenean parasites (Dactylogyrus: Monogenea): attachment apparatus morphology or copulatory organ incompatibility? Parasitology Research, 92, 95–105. [CrossRef] [PubMed] [Google Scholar]
  37. Jousson O, Bartoli P, Pawlowski J. 2000. Cryptic speciation among intestinal parasites (Trematoda: Digenea) infecting sympatric host fishes (Sparidae). Journal of Evolutionary Biology, 13, 778–785. [Google Scholar]
  38. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Research, 30, 3059–3066. [CrossRef] [PubMed] [Google Scholar]
  39. Kearn GC. 1994. Evolutionary expansion of the Monogenea. International Journal for Parasitology, 24, 1227–1271. [CrossRef] [PubMed] [Google Scholar]
  40. Kottelat M, Freyhof J. 2007. Handbook of European freshwater fishes. Berlin: Publications Kottelat, Cornol and Freyhof. [Google Scholar]
  41. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. [CrossRef] [PubMed] [Google Scholar]
  42. Kuusela J, Ziętara MS, Lumme J. 2008. Description of three new European cryptic species of Gyrodactylus Nordmann, 1832 supported by nuclear and mitochondrial phylogenetic characterization. Acta Parasitologica, 53, 120–126. [CrossRef] [Google Scholar]
  43. Machordom A, Doadrio I, Berrebi P. 1995. Phylogeny and evolution of the genus Barbus in the Iberian Peninsula as revealed by allozyme electrophoresis. Journal of Fish Biology, 47, 211–236. [Google Scholar]
  44. Malmberg G. 1957. Om förekomsten av Gyrodactylus på svenska fiskar. Skrifter Utgivna av Södra Sveriges Fiskeriförening, Årsskrift, 1956, 19–76. [Google Scholar]
  45. Malmberg G. 1970. The excretory systems and the marginal hooks as a basis for the systematics of Gyrodactylus (Trematoda, Monogenea). Arkiv for Zoologi, 23, 1–235. [Google Scholar]
  46. Marčić Z, Buj I, Duplić A, Ćaleta M, Mustafić P, Zanella D, Zupančič P, Mrakovčić M. 2011. A new endemic cyprinid species from the Danube drainage. Journal of Fish Biology, 79, 418–430. [PubMed] [Google Scholar]
  47. Mhaisen FT, Abdul-Ameer KN. 2019. Checklists of Dactylogyrus species (Monogenea) from Fishes of Iraq. Biological and Applied Environmental Research, 3, 1–36. [Google Scholar]
  48. Mizelle JD. 1936. New species of trematodes from the gills of Illinois fishes. American Midland Naturalist, 17, 785–806. [CrossRef] [Google Scholar]
  49. Myers N, Mittermeler RA, Mittermeler CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. [CrossRef] [PubMed] [Google Scholar]
  50. Oikonomou A, Leprieur F, Leonardos ID. 2014. Biogeography of freshwater fishes of the Balkan Peninsula. Hydrobiologia, 738, 205–220. [CrossRef] [Google Scholar]
  51. Osmanov SO. 1958. New monogenean species from Amu Darya River fishes. Uzbekskii Biologicheskii Zhurnal, 5, 35–37. [Google Scholar]
  52. Perea S, Böhme M, Zupančič P, Freyhof J, Šanda R, Özulu M, Abdoli A, Doadrio I. 2010. Phylogenetic relationships and biogeographical patterns in circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evolutionary Biology, 10, 265. [CrossRef] [PubMed] [Google Scholar]
  53. Perea S, Vukić J, Šanda R, Doadrio I. 2016. Ancient mitochondrial capture as factor promoting mitonuclear discordance in freshwater fishes: a case study in the genus Squalius (Actinopterygii, Cyprinidae) in Greece. PLoS One, 11, e0166292. [CrossRef] [PubMed] [Google Scholar]
  54. Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M. 2008. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48, 369–371. [CrossRef] [PubMed] [Google Scholar]
  55. Poulin R. 1992. Determinants of host-specificity in parasites of freshwater fishes. International Journal for Parasitology, 22, 753–758. [CrossRef] [PubMed] [Google Scholar]
  56. Poulin R. 2002. The evolution of monogenean diversity. International Journal for Parasitology, 32, 245–254. [CrossRef] [PubMed] [Google Scholar]
  57. Poulin R, Leung TLF. 2010. Taxonomic resolution in parasite community studies: Are things getting worse? Parasitology, 137, 1967–1973. [CrossRef] [PubMed] [Google Scholar]
  58. Pugachev ON, Gerasev PI, Gussev AV, Ergens R, Khotenowsky I. 2009. Guide to Monogenoidea of freshwater fish of Palearctic and Amur Regions. Ledizioni LediPublishing, Milano, Italy. [Google Scholar]
  59. Rahmouni I, Řehulková E, Pariselle A, Rkhami OB, Šimková A. 2017. Four new species of Dactylogyrus Diesing, 1850 (Monogenea: Dactylogyridae) parasitising the gills of northern Moroccan Luciobarbus Heckel (Cyprinidae): morphological and molecular characterisation. Systematic Parasitology, 94, 575–591. [CrossRef] [PubMed] [Google Scholar]
  60. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. [CrossRef] [PubMed] [Google Scholar]
  61. Razo-Mendivil U, García-Vásquez A, Rubio-Godoy M. 2016. Spot the difference: two cryptic species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) infecting Astyanax aeneus (Actinopterygii, Characidae) in Mexico. Parasitology International, 65, 389–400. [CrossRef] [PubMed] [Google Scholar]
  62. Řehulková E. 2018. Ectoparasitic helminths (Monogenea), in A Guide to the Parasites of African Freshwater Fishes, Scholz T, Vanhove MPM, Smit N, Jayasundera Z, Gelnar M, Editors. ABC Taxa. CEBioS, Royal Belgian Institute of Natural Sciences: Brussels, Belgium. p. 89–98. [Google Scholar]
  63. Robalo JI, Almada VC, Levy A, Doadrio I. 2007. Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of five new genera. Molecular Phylogenetics and Evolution, 42, 362–372. [CrossRef] [PubMed] [Google Scholar]
  64. Rohde K. 1979. A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist, 114, 648–671. [CrossRef] [Google Scholar]
  65. Rohde K, Hobbs RP. 1986. Species segregation: competition or reinforcement of reproductive barriers? in Parasites Lives. Papers on Parasites, their Hosts their Association to Honor, Sprent JFA, Cremin M, Dobson C, Noorhouse E, Editors. University of Queensland Press: St. Lucia. p. 189–199. [Google Scholar]
  66. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. [CrossRef] [PubMed] [Google Scholar]
  67. Sanjur OI, Carmona JA, Doadrio I. 2003. Evolutionary and biogeographical patterns within Iberian populations of the genus Squalius inferred from molecular data. Molecular Phylogenetics and Evolution, 29, 20–30. [CrossRef] [PubMed] [Google Scholar]
  68. Schönhuth S, Vukić J, Šanda R, Yang L, Mayden RL. 2018. Phylogenetic relationships and classification of the Holarctic family Leuciscidae (Cypriniformes: Cyprinoidei). Molecular Phylogenetics and Evolution, 127, 781–799. [Google Scholar]
  69. Schultheiß R, Albrecht C, Bößneck U, Wilke T. 2008. The neglected side of speciation in ancient lakes: phylogeography of an inconspicuous mollusc taxon in lakes Ohrid and Prespa. Hydrobiologia, 615, 141–156. [CrossRef] [Google Scholar]
  70. Shinn AP, Gibson DI, Sommerville C. 1993. An SEM study of the haptoral sclerites of the genus Gyrodactylus Nordmann, 1832 (Monogenea) following extraction by digestion and sonication techniques. Systematic Parasitology, 25, 135–144. [CrossRef] [Google Scholar]
  71. Shukerova SA, Kirin D. 2008. Helminth communities of the rudd Scardinius erythrophthalmus (Cypriniformes, Cyprinidae) from Srebarna Biosphere Reserve, Bulgaria. Journal of Helminthology, 82, 319–323. [CrossRef] [PubMed] [Google Scholar]
  72. Šimková A, Morand S. 2008. Co-evolutionary patterns in congeneric monogeneans: a review of Dactylogyrus species and their cyprinid hosts. Journal of Fish Biology, 73, 2210–2227. [CrossRef] [Google Scholar]
  73. Šimková A, Ondračková M, Gelnar M, Morand S. 2002. Morphology and coexistence of congeneric ectoparasite species: reinforcement of reproductive isolation? Biological Journal of the Linnean Society, 76, 125–135. [Google Scholar]
  74. Šimková A, Plaisance L, Matějusová I, Morand S, Verneau O. 2003. Phylogenetic relationships of the Dactylogyridae Bychowsky, 1933 (Monogenea: Dactylogyridea): the need for the systematic revision of the Ancyrocephalinae Bychowsky, 1937. Systematic Parasitology, 54, 1–11. [CrossRef] [PubMed] [Google Scholar]
  75. Šimková A, Matějusová I, Cunningham CO. 2006. A molecular phylogeny of the Dactylogyridae sensu Kritsky & Boeger (1989) (Monogenea) based on the D1–D3 domains of large subunit rDNA. Parasitology, 133, 43–53. [CrossRef] [PubMed] [Google Scholar]
  76. Šimková A, Verneau O, Gelnar M, Morand S. 2006. Specificity and specialization of congeneric monogeneans parasitizing cyprinid fish. Evolution, 60, 1023. [CrossRef] [PubMed] [Google Scholar]
  77. Šimková A, Benovics M, Rahmouni I, Vukić J. 2017. Host-specific Dactylogyrus parasites revealing new insights on the historical biogeography of Northwest African and Iberian cyprinid fish. Parasites & Vectors, 10, 589. [CrossRef] [PubMed] [Google Scholar]
  78. Stamatakis A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. [CrossRef] [PubMed] [Google Scholar]
  79. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. [CrossRef] [PubMed] [Google Scholar]
  80. Stierandová S, Vukić J, Vasil’eva ED, Zogaris S, Shumka S, Halačka K, Vetešník L, Švátora M, Nowak M, Stefanov T, Koščo J, Mendel J. 2016. A multilocus assessment of nuclear and mitochondrial sequence data elucidates phylogenetic relationships among European spirlins (Alburnoides, Cyprinidae). Molecular Phylogenetics and Evolution, 94, 479–491. [CrossRef] [PubMed] [Google Scholar]
  81. Stojanovski S, Kulišić Z, Baker RA, Hristovski N, Cakić P, Hristovski M. 2004. Fauna of monogenean trematodes – parasites of some cyprinid fishes from Lake Prespa, Macedonia. Acta Veterinaria, 54, 73–82. [CrossRef] [Google Scholar]
  82. Stojanovski S, Hristovski N, Cakic P, Nedeva I, Karaivanova E, Atanasov G. 2009. Monogenean trematodes – parasites of some cyprinid fishes from lakes Ohrid and Prespa (Macedonia). Biotechnology and Biotechnological Equipment, 23, 360–364. [CrossRef] [Google Scholar]
  83. Stojanovski S, Hristovski N, Cakic P, Hristovski M, Velkova-Jordanoska L, Blazekovic D. 2010. Monogenean trematods of chub Leuciscus cephalus albus Bonaparte, 1838 from the lake Ohrid (Macedonia). Biotechnology and Biotechnological Equipment, 24, 623–627. [CrossRef] [Google Scholar]
  84. Stojanovski S, Hristovski N, Velkova-Jordanoska L, Blazekovic-Dimovska D, Atanasov G. 2012. Parasite fauna of chub (Squalius squalus Bonaparte, 1837) from Lake Ohrid (FYR Macedonia). Acta Zoologica Bulgarica, Supplement, 119–122. [Google Scholar]
  85. Sušnik S, Snoj A, Wilson IF, Mrdak D, Weiss S. 2007. Historical demography of brown trout (Salmo trutta) in the Adriatic drainage including the putative S. letnica endemic to Lake Ohrid. Molecular Phylogenetics and Evolution, 44, 63–76. [CrossRef] [PubMed] [Google Scholar]
  86. Tsigenopoulos CS, Berrebi P. 2000. Molecular phylogeny of north Mediterranean freshwater barbs (genus Barbus: Cyprinidae) inferred from cytochrome b sequences: biogeographic and systematic implications. Molecular Phylogenetics and Evolution, 14, 165–179. [CrossRef] [PubMed] [Google Scholar]
  87. Tsigenopoulos CS, Durand JD, Ünlü E, Berrebi P. 2003. Rapid radiation of the Mediterranean Luciobarbus species (Cyprinidae) after the Messinian salinity crisis of the Mediterranean Sea, inferred from mitochondrial phylogenetic analysis. Biological Journal of the Linnean Society, 80, 207–222. [CrossRef] [Google Scholar]
  88. Wagner B, Wilke T. 2011. Evolutionary and geological history of the Balkan lakes Ohrid and Prespa. Biogeosciences, 8, 995–998. [CrossRef] [Google Scholar]
  89. Yang L, Sado T, Vincent Hirt M, Pasco-Viel E, Arunachalam M, Li J, Wang X, Freyhof J, Saitoh K, Simons AM, Miya M, He S, Mayden RL. 2015. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution, 85, 97–116. [CrossRef] [PubMed] [Google Scholar]
  90. Zardoya R, Doadrio I. 1999. Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. Journal of Molecular Evolution, 49, 227–237. [CrossRef] [PubMed] [Google Scholar]
  91. Zardoya R, Economidis PS, Doadrio I. 1999. Phylogenetic relationships of Greek Cyprinidae: molecular evidence for at least two origins of the Greek cyprinid fauna. Molecular Phylogenetics and Evolution, 13, 122–131. [CrossRef] [PubMed] [Google Scholar]
  92. Ziȩtara MS, Lumme J. 2003. The crossroads of molecular, typological and biological species concepts: two new species of Gyrodactylus Nordmann, 1832 (Monogenea: Gyrodactylidae). Systematic Parasitology, 55, 39–52. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.