Open Access
Research Article
Issue
Parasite
Volume 27, 2020
Article Number 72
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2020069
Published online 11 December 2020
  1. Ardern SL, McLean IG, Anderson S, Maloney R, Lambert DM. 1994. The effects of blood sampling on the behavior and survival of the endangered Chatham Island black robin (Petroica traversi). Conservation Biology, 8, 857–862. [CrossRef] [Google Scholar]
  2. Arnold JM, Oswald SA, Voigt CC, Palme R, Braasch A, Bauch C, Becker PH. 2008. Taking the stress out of blood collection: Comparison of field blood-sampling techniques for analysis of baseline corticosterone. Journal of Avian Biology, 39, 588–592. [CrossRef] [Google Scholar]
  3. Aznar-Lopez C, Vazquez-Moron S, Marston DA, Juste J, Ibáñez C, Berciano JM, Salsamendi E, Aihartza J, Banyard AC, McElhinney L, Fooks AR, Echevarria J. 2013. Detection of rhabdovirus viral RNA in oropharyngeal swabs and ectoparasites of spanish bats. Journal of General Virology, 94, 69–75. [CrossRef] [Google Scholar]
  4. Bauch C, Wellbrock AHJ, Nagel R, Rozman J, Witte K. 2013. “Bug-eggs” for Common Swifts and other small birds: Minimally-invasive and stress-free blood sampling during incubation. Journal of Ornithology, 154, 581–585. [CrossRef] [Google Scholar]
  5. Becker PH, Voigt CC, Arnold JM, Nagel R. 2006. A non-invasive technique to bleed incubating birds without trapping: A blood-sucking bug in a hollow egg. Journal of Ornithology, 147, 115–118. [CrossRef] [Google Scholar]
  6. Bell KC, Carlson CJ, Phillips AJ. 2018. Parasite Collections: Overlooked resources for integrative research and conservation. Trends in Parasitology, 13–16. [PubMed] [Google Scholar]
  7. Birtles RJ, Raoult D. 1996. Comparison of partial citrate synthase gene (gltA) sequences for phylogenetic analysis of Bartonella species. International Journal of Systematic Bacteriology, 46, 891–897. [CrossRef] [PubMed] [Google Scholar]
  8. Brown MB, Brown CR. 2009. Blood sampling reduces annual survival in Cliff Swallows (Petrochelidon pyrrhonota). Auk, 126, 853–861. [CrossRef] [Google Scholar]
  9. Bruyndonckx N, Biollaz F, Dubey S, Goudet J, Christe P. 2010. Mites as biological tags of their hosts. Molecular Ecology, 19, 2770–2778. [CrossRef] [PubMed] [Google Scholar]
  10. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. 2006. Bats: Important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19, 531–545. [CrossRef] [PubMed] [Google Scholar]
  11. Campana MG, Kurata NP, Foster JT, Helgen LE, Reeder DAM, Fleischer RC, Helgen KM. 2017. White-nose syndrome fungus in a 1918 bat specimen from France. Emerging Infectious Diseases, 23, 1611–1612. [CrossRef] [PubMed] [Google Scholar]
  12. Carlson CJ, Burgio KR, Dougherty ER, Phillips AJ, Bueno VM, Clements CF, Castaldo G, Dallas TA, Cizauskas CA, Cumming GS, Doña J, Harris NC, Jovani R, Mironov S, Muellerklein OC, Proctor HC, Getz WM. 2017. Parasite biodiversity faces extinction and redistribution in a changing climate. Science Advances, 3, e1602422. [CrossRef] [PubMed] [Google Scholar]
  13. Carlson CJ, Hopkins S, Bell KC, Doña J, Godfrey SS, Kwak ML, Lafferty KD, Moir ML, Speer KA, Strona G, Torchin M, Wood CL. 2020. A global parasite conservation plan. Biological Conservation, 250, 108596. [CrossRef] [Google Scholar]
  14. Carøe C, Gopalakrishnan S, Vinner L, Mak SST, Sinding MHS, Samaniego JA, Wales N, Sicheritz-Pontén T, Gilbert MTP. 2018. Single-tube library preparation for degraded DNA. Methods in Ecology and Evolution, 9, 410–419. [CrossRef] [Google Scholar]
  15. Chinnadurai SK, Strahl-Heldreth D, Fiorello CV, Harms CA. 2016. Best-practice guidelines for field-based surgery and anesthesia of free-ranging wildlife. I. Anesthesia and analgesia. Journal of Wildlife Diseases, 52, S14–S27. [CrossRef] [PubMed] [Google Scholar]
  16. Cizauskas CA, Carlson CJ, Burgio KR, Clements CF, Dougherty ER, Harris NC, Phillips AJ. 2017. Parasite vulnerability to climate change: An evidence-based functional trait approach. Royal Society Open Science. p. 4. [Google Scholar]
  17. Clément L, Dietrich M, Markotter W, Fasel NJ, Monadjem A, López-Baucells A, Scaravelli D, Théou P, Pigeault R, Ruedi M, Christe P. 2020. Out of Africa: The origins of the protozoan blood parasites of the Trypanosoma cruzi clade found in bats from Africa. Molecular Phylogenetics and Evolution, 145, 106705. [CrossRef] [PubMed] [Google Scholar]
  18. Dick CW, Patterson BD. 2006. Bat flies: Obligate ectoparasites of bats, in Micromammals and Macroparasites. Morand S, Krasnov BR, Poulin R, Editors. Springer: Tokyo. p. 179–194. [CrossRef] [Google Scholar]
  19. Dobson AP. 2005. What links bats to emerging infectious diseases? Science, 310, 628–629. [CrossRef] [Google Scholar]
  20. Dryden MW, Gaafar SM. 1991. Blood consumption by the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Journal of Medical Entomology, 28, 394–400. [CrossRef] [PubMed] [Google Scholar]
  21. Dufty AMJ. 1988. The effects of repeated blood sampling on survival in Brown-Headed Cowbirds. The Condor, 90, 939–941. [CrossRef] [Google Scholar]
  22. Duval L, Robert V, Csorba G, Hassanin A, Randrianarivelojosia M, Walston J, Nhim T, Goodman SM, Ariey F. 2007. Multiple host-switching of Haemosporidia parasites in bats. Malaria Journal, 6, 157. [CrossRef] [PubMed] [Google Scholar]
  23. Ellison LE, O’Shea TJ, Wimsatt J, Pearce RD, Neubaum DJ, Neubaum MA, Bowen RA. 2006. Sampling blood from big brown bats (Eptesicus fuscus) in the field with and without anesthesia: Impacts on survival. Journal of Wildlife Diseases, 42, 849–852. [CrossRef] [PubMed] [Google Scholar]
  24. Ellison LE, Valdez EW, Cryan PM, O’Shea TJ, Bogan MA. 2013. Standard Operating Procedure for the Study of Bats in the Field. Fort Collins Science Center. p. 40. [Google Scholar]
  25. Eshar D, Weinberg M. 2010. Venipuncture in bats. Lab. Animal, 39, 175–176. [Google Scholar]
  26. Frick WF, Kingston T, Flanders J. 2019. A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences, 1–21. [Google Scholar]
  27. Fritz GN. 1983. Biology and ecology of bat flies (Diptera: Streblidae) on bats in the genus Carollia. Journal of Medical Entomology, 20, 1–10. [CrossRef] [PubMed] [Google Scholar]
  28. Gardner RA, Molyneux DH. 1988. Polychromophilus murinus: A malarial parasite of bats: Life-history and ultrastructural studies. Parasitology, 96, 591–605. [CrossRef] [PubMed] [Google Scholar]
  29. Gettings KB, Kiesler KM, Vallone PM. 2015. Performance of a next generation sequencing SNP assay on degraded DNA. Forensic Science International: Genetics, 19, 1–9. [CrossRef] [Google Scholar]
  30. Goldberg TL, Bennett AJ, Kityo R, Kuhn JH, Chapman CA. 2017. Kanyawara Virus: A novel rhabdovirus infecting newly discovered nycteribiid bat flies infesting previously unknown pteropodid bats in Uganda. Scientific Reports, 7, 1–8. [CrossRef] [PubMed] [Google Scholar]
  31. Haelewaters D, Hiller T, Dick CW. 2018. Bats, bat flies, and fungi: A case of hyperparasitism. Trends in Parasitology, 34, 784–799. [CrossRef] [PubMed] [Google Scholar]
  32. Halos L, Jamal T, Maillard R, Guillot J, Chomel B, Girard B, Vayssier-taussat M, Boulouis H. 2004. Role of Hippoboscidae flies as potential vectors of Bartonella spp. infecting wild and domestic ruminants. Applied and Environmental Microbiology, 70, 6302–6305. [CrossRef] [PubMed] [Google Scholar]
  33. Harmon A, Littlewood DTJ, Wood CL. 2019. Parasites lost: Using natural history collections to track disease change across deep time. Frontiers in Ecology and the Environment, 17, 157–166. [CrossRef] [Google Scholar]
  34. Hayman DTS, Bowen RA, Cryan PM, Mccracken GF, O’Shea TJ, Peel AJ, Gilbert A, Webb CT, Wood JLN. 2013. Ecology of zoonotic infectious diseases in bats: Current knowledge and future directions. Zoonoses and Public Health, 60, 2–21. [CrossRef] [PubMed] [Google Scholar]
  35. Hayman DTS. 2016. Bats as viral reservoirs. Annual Review of Virology, 3, 77–99. [CrossRef] [PubMed] [Google Scholar]
  36. Hornok S, Kovacs R, Meli ML, Gönczi E, Hofmann-Lehmann R, Kontschan J, Gyuranecz M, Dan A, Molnár V. 2012. First detection of bartonellae in a broad range of bat ectoparasites. Veterinary Microbiology, 3, 541–543. [CrossRef] [PubMed] [Google Scholar]
  37. Hornok S, Szőke K, Görföl T, Földvári G, Tu VT, Takács N, Kontschán J, Sándor AD, Estók P, Epis S, Boldogh S, Kováts D, Wang Y. 2017. Molecular investigations of the bat tick Argas vespertilionis (Ixodida: Argasidae) and Babesia vesperuginis (Apicomplexa: Piroplasmida) reflect “bat connection” between Central Europe and Central Asia. Experimental and Applied Acarology, 72, 69–77. [CrossRef] [Google Scholar]
  38. Hornok S, Szoke K, Meli ML, Sándor AD, Görföl T, Estók P, Wang Y, Tu VT, Kováts D, Boldogh SA, Corduneanu A, Sulyok KM, Gyuranecz M, Kontschán J, Takács N, Halajian A, Epis S, Hofmann-Lehmann R. 2019. Molecular detection of vector-borne bacteria in bat ticks (Acari: Ixodidae, Argasidae) from eight countries of the Old and New Worlds. Parasites and Vectors, 12, 50. [CrossRef] [Google Scholar]
  39. Hoysak DJ, Weatherhead PJ. 1991. Sampling blood from birds: A technique and an assessment of its effect. Condor, 93, 746–752. [CrossRef] [Google Scholar]
  40. Jansen Van Vuren P, Wiley MR, Palacios G, Storm N, Markotter W, Birkhead M, Kemp A, Paweska JT. 2017. Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana). Journal of General Virology, 98, 935–945. [CrossRef] [Google Scholar]
  41. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870–1874. [CrossRef] [PubMed] [Google Scholar]
  42. Kunz TH, Hodgkison R, Weise CD. 2009. Methods of capturing and handling bats, in Ecol. Behav. Methods Study Bats, 2nd edn. Kunz TH, Parsons S, Editors. Johns Hopkins University Press: Baltimore. [Google Scholar]
  43. Kunz TH, de Torrez EB, Bauer D, Lobova T, Fleming TH. 2011. Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223, 1–38. [CrossRef] [PubMed] [Google Scholar]
  44. Kwak ML, Heath ACG, Cardoso P. 2020. Methods for the assessment and conservation of threatened animal parasites. Biological Conservation, 248, 108696. [CrossRef] [Google Scholar]
  45. Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW. 2008. Parasites in food webs: The ultimate missing links. Ecology Letters, 11, 533–546. [CrossRef] [PubMed] [Google Scholar]
  46. Lafferty KD, Dobson AP, Kuris AM. 2006. Parasites dominate food web links. Proceedings of the National Academy of Sciences of the United States of America, 103, 11211–11216. [CrossRef] [PubMed] [Google Scholar]
  47. Lučan RK, Bandouchova H, Bartonička T, Pikula J, Zahradníková A, Zukal J, Martínková N. 2016. Ectoparasites may serve as vectors for the white-nose syndrome fungus. Parasites and Vectors, 9, 1–5. [CrossRef] [Google Scholar]
  48. Maa TC. 1971. Revision of the Australian batflies. Pacific Insects Monograph, 28, 1–118. [Google Scholar]
  49. Markvardsen SN, Kjelgaard-Hansen M, Ritz C, Sørensen DB. 2012. Less invasive blood sampling in the animal laboratory: Clinical chemistry and haematology of blood obtained by the triatominae bug dipetalogaster maximus. Laboratory Animals, 46, 136–141. [CrossRef] [PubMed] [Google Scholar]
  50. Matei IA, D’Amico G, Yao PK, Ionica AM, Kanyari PWN, Daskalaki AA, Dumitrache MO, Sandor AD, Gherman CM, Qablan M, Modrý D, Mihalca AD. 2016. Molecular detection of Anaplasma platys infection in free-roaming dogs and ticks from Kenya and Ivory Coast. Parasites and Vectors, 9, 157. [CrossRef] [Google Scholar]
  51. McKee CD, Krawczyk AI, Sándor AD, Görföl T, Földvári M, Földvári G, Dekeukeleire D, Haarsma AJ, Kosoy MY, Webb CT, Sprong H. 2019. Host phylogeny, geographic overlap, and roost sharing shape parasite communities in European bats. Frontiers in Ecology and Evolution, 7, 1–21. [CrossRef] [Google Scholar]
  52. Moratelli R, Calisher CH. 2015. Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses? Memórias do Instituto Oswaldo Cruz, 110, 1–22. [CrossRef] [Google Scholar]
  53. Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, Dittmar K. 2012. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infection, Genetics and Evolution, 12, 1717–1723. [CrossRef] [Google Scholar]
  54. Movila A, Toderas I, Uspenskaia I, Conovalov J. 2013. Molecular detection of tick-borne pathogens in Ixodes ricinus from Moldova collected in 1960. Ticks and Tick-Borne Diseases, 4, 359–361. [CrossRef] [PubMed] [Google Scholar]
  55. Nelder MP, Reeves WK, Adler PH, Wozniak A, Wills W. 2009. Ectoparasites and associated pathogens of free-roaming and captive animals in zoos of South Carolina. Vector-Borne and Zoonotic Diseases, 9, 469–477. [CrossRef] [Google Scholar]
  56. Nieberding CM, Olivieri I. 2007. Parasites: proxies for host genealogy and ecology? Trends in Ecology and Evolution, 22, 156–165. [CrossRef] [Google Scholar]
  57. Norman AF, Regnery R, Jameson P, Greene C, Krause DC. 1995. Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. Journal of Clinical Microbiology, 33, 1797–1803. [CrossRef] [PubMed] [Google Scholar]
  58. Noyes H, Stevens J, Teixeira M, Phelan J, Holz P. 1999. A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. International Journal for Parasitology, 29, 331–339. [CrossRef] [PubMed] [Google Scholar]
  59. Olival KJ, Dick CW, Simmons NB, Morales JC, Melnick DJ, Dittmar K, Perkins SL, Daszak P, Desalle R. 2013. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia. Parasites & Vectors, 6, 231. [CrossRef] [PubMed] [Google Scholar]
  60. Overballe-Petersen S, Orlando L, Willerslev E. 2012. Next-generation sequencing offers new insights into DNA degradation. Trends in Biotechnology, 30, 364–368. [CrossRef] [PubMed] [Google Scholar]
  61. Persichetti MF, Solano-Gallego L, Serrano L, Altet L, Reale S, Masucci M, Pennisi MG. 2016. Detection of vector-borne pathogens in cats and their ectoparasites in southern Italy. Parasites & Vectors, 9, 247. [CrossRef] [PubMed] [Google Scholar]
  62. Poinar GO. 2011. Vetufebrus ovatus n. gen., n. sp. (Haemospororida: Plasmodiidae) vectored by a streblid bat fly (Diptera: Streblidae) in Dominican amber. Parasites & Vectors, 4, 229. [CrossRef] [PubMed] [Google Scholar]
  63. Poulin R, Morand S. 2000. The diversity of parasites. The Quarterly Review of Biology, 75, 277–293. [CrossRef] [PubMed] [Google Scholar]
  64. Prenter J, MacNeil C, Dick JTA, Dunn AM. 2004. Roles of parasites in animal invasions. Trends in Ecology and Evolution, 19, 385–390. [CrossRef] [PubMed] [Google Scholar]
  65. R Core Team. 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org. [Google Scholar]
  66. Ramasindrazana B, Goodman SM, Dsouli N, Gomard Y, Lagadec E, Randrianarivelojosia M, Dellagi K, Tortosa P. 2018. Polychromophilus spp. (Haemosporida) in Malagasy bats: Host specificity and insights on invertebrate vectors. Malaria Journal, 17, 1–11. [CrossRef] [PubMed] [Google Scholar]
  67. Reeves WK, Beck J, Orlova MV, Daly JL, Pippin K, Revan F, Loftis AD. 2016. Ecology of bats, their ectoparasites, and associated pathogens on Saint Kitts Island. Journal of Medical Entomology, 53, 1218–1225. [CrossRef] [PubMed] [Google Scholar]
  68. Reeves WK, Loftis AD, Gore JA, Dasch GA. 2005. Molecular evidence for novel Bartonella species in Trichobius major (Diptera: Streblidae) and Cimex adjunctus (Hemiptera: Cimicidae) from two southeastern bat caves, U.S.A. Journal of Vector Ecology, 30, 339–341. [Google Scholar]
  69. Reeves WK, Rogers TE, Durden LA, Dasch GA. 2007. Association of Bartonella with the fleas (Siphonaptera) of rodents and bats using molecular techniques. Journal of Vector Ecology, 32, 118–122. [CrossRef] [Google Scholar]
  70. Rohland N, Siedel H, Hofreiter M. 2010. A rapid column-based ancient DNA extraction method for increased sample throughput. Molecular Ecology Resources, 10, 677–683. [CrossRef] [PubMed] [Google Scholar]
  71. Romero LM, Reed JM. 2005. Collecting baseline corticosterone samples in the field: Is under 3 min good enough? Comparative Biochemistry and Physiology, 140, 73–79. [CrossRef] [Google Scholar]
  72. Russo D, Ancillotto L, Hughes AC, Galimberti A, Mori E. 2017. Collection of voucher specimens for bat research: conservation, ethical implications, reduction, and alternatives. Mammal Review, 47, 237–246. [CrossRef] [Google Scholar]
  73. Sándor AD, Corduneanu A, Péter Á, Mihalca AD, Barti L, Csosz I, Szoke K, Hornok S. 2019. Bats and ticks: Host selection and seasonality of bat-specialist ticks in eastern Europe. Parasites & Vectors, 12, 605. [CrossRef] [PubMed] [Google Scholar]
  74. Sándor AD, Földvári M, Krawczyk AI, Sprong H, Corduneanu A, Barti L, Görföl T, Estók P, Kováts D, Szekeres S, László Z, Hornok S, Földvári G. 2018. Eco-epidemiology of novel Bartonella genotypes from parasitic flies of insectivorous bats. Microbial Ecology, 1–13. [Google Scholar]
  75. Sándor AD, Kalmár Z, Matei I, Ionicǎ AM, Mǎrcuţan ID. 2017. Urban breeding corvids as disseminators of ticks and emerging tick-borne pathogens. Vector-Borne and Zoonotic Diseases, 17, 152–154. [CrossRef] [Google Scholar]
  76. Van Schaik J, Kerth G, Bruyndonckx N, Christe P. 2014. The effect of host social system on parasite population genetic structure: Comparative population genetics of two ectoparasitic mites and their bat hosts. BMC Evolutionary Biology, 14, 1–15. [CrossRef] [PubMed] [Google Scholar]
  77. Scott ME, Dobson A. 1989. The role of parasites in regulating host abundance. Parasitology Today, 5, 176–183. [CrossRef] [Google Scholar]
  78. Sheldon LD, Chin EH, Gill SA, Schmaltz G, Newman AEM, Soma KK. 2008. Effects of blood collection on wild birds: An update. Journal of Avian Biology, 39, 369–378. [CrossRef] [Google Scholar]
  79. Sierras A, Schal C. 2017. Comparison of ingestion and topical application of insecticides against the common bed bug, Cimex lectularius (Hemiptera: Cimicidae). Pest Management Science, 73, 521–527. [CrossRef] [PubMed] [Google Scholar]
  80. Sikes RS, Gannon WL. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92, 235–253. [CrossRef] [Google Scholar]
  81. Socolovschi C, Kernif T, Raoult D, Parola P. 2012. Borrelia, Rickettsia, and Ehrlichia species in bat ticks, France, 2010. Emerging Infectious Diseases, 18, 1966–1975. [CrossRef] [PubMed] [Google Scholar]
  82. Speer KA, Luetke E, Bush E, Sheth B, Gerace A, Quicksall Z, Miyamoto M, Dick CW, Dittmar K, Albury N, Reed DL. 2019. A fly on the cave wall: Parasite genetics reveal fine-scale dispersal patterns of bats. Journal of Parasitology, 105, 555. [CrossRef] [Google Scholar]
  83. Strona G. 2015. Past, present and future of host-parasite co-extinctions. International Journal for Parasitology: Parasites and Wildlife, 4, 431–441. [CrossRef] [Google Scholar]
  84. Sumasgutner P, Rubin I, Gamauf A. 2014. Collecting blood samples in Eurasian Kestrels (Falco tinnunculus) (Aves: Falconidae) via blood-sucking bugs (Insecta: Hemiptera: Reduviidae) and their use in genetics and leucocyte profiles. Annalen des Naturhistorischen Museums in Wien B, 116, 247–257. [Google Scholar]
  85. Swann DE, Kuenzi AJ, Morrison ML, DeStefano S. 1997. Effects of sampling blood on survival of small mammals. Journal of Mammalogy, 78, 908–913. [CrossRef] [Google Scholar]
  86. Szentiványi T, Christe P, Glaizot O. 2019. Bat flies and their microparasites: Current knowledge and distribution. Frontiers in Veterinary Science, 6, 115. [CrossRef] [PubMed] [Google Scholar]
  87. Szentiványi T, Estók P, Földvàri M. 2016. Checklist of host associations of European bat flies (Diptera: Nycteribiidae, Streblidae). Zootaxa, 4205, 101. [CrossRef] [Google Scholar]
  88. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21, 2045–2050. [CrossRef] [PubMed] [Google Scholar]
  89. Theodor O. 1967. An illustrated catalogue of the Rothschild collection of Nycteribiidae in the British Museum (Natural History), with keys and short descriptions for the identification of subfamilies, genera, species and subspecies. British Museum (Natural History): London. [Google Scholar]
  90. Thomsen R, Voigt CC. 2006. Non-invasive blood sampling from primates using laboratory-bred blood-sucking bugs (Dipetalogaster maximus; Reduviidae, Heteroptera). Primates, 47, 397–400. [CrossRef] [PubMed] [Google Scholar]
  91. Tsangaras K, Greenwood AD. 2012. Museums and disease: Using tissue archive and museum samples to study pathogens. Annals of Anatomy, 194, 58–73. [CrossRef] [Google Scholar]
  92. Voigt CC, Faßbender M, Dehnhard M, Wibbelt G, Jewgenow K, Hofer H, Schaub GA. 2004. Validation of a minimally invasive blood-sampling technique for the analysis of hormones in domestic rabbits, Oryctolagus cuniculus (Lagomorpha). General and Comparative Endocrinology, 135, 100–107. [CrossRef] [PubMed] [Google Scholar]
  93. Voigt CC, Michener R, Wibbelt G, Kunz TH, Von Helversen O. 2005. Blood-sucking bugs as a gentle method for blood-collection in water budget studies using doubly labelled water. Comparative Biochemistry and Physiology, 142, 318–324. [CrossRef] [PubMed] [Google Scholar]
  94. Vos AC, Müller T, Neubert L, Voigt CC. 2010. Validation of a less invasive blood sampling technique in rabies serology using reduviid bugs (Triatominae, Hemiptera). Journal of Zoo and Wildlife Medicine, 41, 63–68. [CrossRef] [Google Scholar]
  95. Van Vuren PJ, Wiley M, Palacios G, Storm N, McCulloch S, Markotter W, Birkhead M, Kemp A, Paweska JT. 2016. Isolation of a novel fusogenic orthoreovirus from Eucampsipoda africana bat flies in South Africa. Viruses, 8, 1–25. [Google Scholar]
  96. Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, Wibbelt G, Blehert DS, Willis CKR. 2012. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proceedings of the National Academy of Sciences of the United States of America, 109, 6999–7003. [CrossRef] [PubMed] [Google Scholar]
  97. Whiteman NK, Parker PG. 2005. Using parasites to infer host population history: A new rationale for parasite conservation. Animal Conservation, 8, 175–181. [CrossRef] [Google Scholar]
  98. Widmaier EP, Harmer TL, Sulak AM, Kunz TH. 1994. Further characterization of the pituitary-adrenocortical responses to stress in Chiroptera. Journal of Experimental Zoology, 269, 442–449. [CrossRef] [Google Scholar]
  99. Witsenburg F, Clément L, López-Baucells A, Palmeirim J, Pavlinić I, Scaravelli D, Ševčík M, Dutoit L, Salamin N, Goudet J, Christe P. 2015. How a haemosporidian parasite of bats gets around: The genetic structure of a parasite, vector and host compared. Molecular Ecology, 24, 926–940. [CrossRef] [PubMed] [Google Scholar]
  100. Witsenburg F, Schneider F, Christe P. 2015. Signs of a vector’s adaptive choice: On the evasion of infectious hosts and parasite-induced mortality. Oikos, 124, 668–676. [CrossRef] [Google Scholar]
  101. Zahradníková A, Kovacova V, Martínková N, Orlova MV, Orlov OL, Piacek V, Zukal J, Pikula J. 2018. Historic and geographic surveillance of Pseudogymnoascus destructans possible from collections of bat parasites. Transboundary and Emerging Diseases, 65, 303–308. [CrossRef] [PubMed] [Google Scholar]
  102. Zhao S, Yang M, Jiang M, Yan B, Zhao S, Yuan W, Wang B, Hornok S, Wang Y. 2019. Rickettsia raoultii and Rickettsia sibirica in ticks from the long-tailed ground squirrel near the China-Kazakhstan border. Experimental and Applied Acarology, 77, 425–433. [CrossRef] [Google Scholar]
  103. Zhao S, Yang M, Liu G, Hornok S, Zhao S, Sang C, Tan W, Wang Y. 2020. Rickettsiae in the common pipistrelle Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) and the bat soft tick Argas vespertilionis (Ixodida: Argasidae). Parasites & Vectors, 13, 10. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.