Open Access
Research Article
Issue
Parasite
Volume 27, 2020
Article Number 43
Number of page(s) 12
DOI https://doi.org/10.1051/parasite/2020041
Published online 18 June 2020
  1. Alphey L, Benedict M, Bellini R, Clark G, Dame D, Service M, Dobson S. 2010. Sterile insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Diseases, 10(3), 295–311. [CrossRef] [Google Scholar]
  2. Balestrino F, Benedict MQ, Gilles JR. 2012. A new larval tray and rack system for improved mosquito mass rearing. Journal of Medical Entomology, 49(3), 595–605. [CrossRef] [PubMed] [Google Scholar]
  3. Balestrino F, Puggioli A, Bellini R, Petric D, Gilles J. 2014. Mass production cage for Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 51(1), 155–163. [CrossRef] [PubMed] [Google Scholar]
  4. Balestrino F, Puggioli A, Gilles J, Bellini R. 2014. Validation of a new larval rearing unit for Aedes albopictus (Diptera: Culicidae) mass rearing. Plos One, 9(3), e91914. [CrossRef] [PubMed] [Google Scholar]
  5. Bellini R, Medici A, Puggioli A, Balestrino F, Carrieri M. 2013. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. Journal of Medical Entomology, 50(2), 317–325. [CrossRef] [PubMed] [Google Scholar]
  6. Bellini R, Puggioli A, Balestrino F, Carrieri M, Urbanelli S. 2018. Exploring protandry and pupal size selection for Aedes albopictus sex separation. Parasites & Vectors, 11(Suppl. 2), 650. [CrossRef] [PubMed] [Google Scholar]
  7. Benedict M, Robinson A. 2003. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends in Parasitology, 19, 349–355. [CrossRef] [PubMed] [Google Scholar]
  8. Bimbilé Somda N, Maïga H, Mamai W, Yamada H, Ali A, Konczal A, Gnankiné O, Diabaté A, Sanon A, Dabiré K, Gilles J, Bouyer J. 2019. Insects to feed insects. Feeding Aedes mosquitoes with flies for laboratory rearing. Scientific Reports, 9(1), 11403. [CrossRef] [PubMed] [Google Scholar]
  9. Bouyer J, Yamada H, Pereira R, Bourtzis K, Vreysen M. 2020. Phased conditional approach for mosquito management using sterile insect technique. Trends in Parasitology, 36(4), 325–336. [CrossRef] [PubMed] [Google Scholar]
  10. Breeland S, Jeffery G, Lofgren C, Weidhaas D. 1974. Release of chemosterilized males for the control of Anopheles albimanus in El Salvador. I. Characteristics of the test site and the natural population. American Journal of Tropical Medecine and Hygiene, 23(2), 274–281. [CrossRef] [Google Scholar]
  11. Culbert N, Balestrino F, Dor A, Herranz G, Yamada H, Wallner T, Bouyer J. 2019. A rapid quality control test to foster the development of genetic control in mosquitoes. Scientific Reports, 9(1), 8427. [CrossRef] [PubMed] [Google Scholar]
  12. Culbert N, Maiga H, Bimbilé-Somda N, Gilles J, Bouyer J, Mamai W. 2018. Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasites & Vectors, 11(1), 603. [CrossRef] [PubMed] [Google Scholar]
  13. Dame D, Curtis C, Benedict M, Robinson A, Knols B. 2009. Historical applications of induced sterilisation in field populations of mosquitoes. Malaria Journal, 8, S2. [Google Scholar]
  14. Delatte H, Gimonneau G, Triboire A, Fontenille D. 2009. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. Journal of Medical Entomology, 46(1), 33–41. [CrossRef] [PubMed] [Google Scholar]
  15. Dyck V, Reyes J, Vreysen M, Fernandez E, Teruya T, Barnes B, GomezRiera P, Lindquist D, Loosjes M. 2005. Management of area-wide integrated pest management programmes that integrate the sterile insect technique, in Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, Dyck VA, Hendrichs J, Robinson AS, Editors. Springer: Dordrecht, The Netherlands. p. 525–545. [Google Scholar]
  16. FAO/IAEA. 2019. Guidelines for mass rearing of Aedes mosquitoes version.1.0. [Google Scholar]
  17. Fay R, Morlan H. 1959. A mechanical device for separating the developmental stages, sexes and species of mosquitoes. Mosquito News, 19, 144–147. [Google Scholar]
  18. Focks D. 1980. An improved separator for the developmental stages, sexes, and species of mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 17, 567–568. [CrossRef] [PubMed] [Google Scholar]
  19. Gunathilaka N, Ranathunge T, Udayanga L, Wijegunawardena A, Gilles J, Abeyewickreme W. 2019. Use of mechanical and behavioural methods to eliminate female Aedes aegypti and Aedes albopictus for sterile insect technique and incompatible insect technique applications. Parasites & Vectors, 12(1), 148. [CrossRef] [PubMed] [Google Scholar]
  20. Heitmann A, Jansen S, Lühken R, Leggewie M, Badusche M, Pluskota B, Becker N, Vapalahti O, Schmidt-Chanasit J, Tannich E. 2017. Experimental transmission of Zika virus by mosquitoes from central Europe. Euro Surveillance, 22(2), 30437. [CrossRef] [Google Scholar]
  21. IAEA/WHO. 2020. Guidance framework for testing the sterile insect technique (SIT) as a vector control tool against aedes-borne diseases. Geneva & Vienna: World Health Organization and the International Atomic Energy Agency. Licence: CC BY-NC SA 3.0 IGO. [Google Scholar]
  22. Kittayapong P, Kaeothaisong N, Ninphanomchai S, Limohpasmanee W. 2018. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasites & Vectors, 11(Suppl. 2), 657. [CrossRef] [PubMed] [Google Scholar]
  23. Klassen W. 2009. Introduction: development of the sterile insect technique for African malaria vectors. Malaria Journal, 8(Suppl. 2), I1. [CrossRef] [PubMed] [Google Scholar]
  24. Laird N, Ware J. 1982. Random-effects models for longitudinal data. Biometrics, 38(4), 963–974. [Google Scholar]
  25. Lees R, Gilles J, Hendrichs J, Vreysen M, Bourtzis K. 2015. Back to the future: the sterile insect technique against mosquito disease vectors. Current Opinion in Insect Science, 10, 156–162. [CrossRef] [PubMed] [Google Scholar]
  26. Lofgren C, Dame D, Breeland S, Weidhaas D, Jeffery G, Kaiser R, Ford H, Boston M, Baldwin K. 1974. Release of chemosterilized males for the control of Anopheles albimanus in El Salvador III. Field methods and population control. American Journal of Tropical Medecine and Hygiene, 23, 288–297. [CrossRef] [Google Scholar]
  27. Lutrat C, Giesbrecht D, Marois E, Whyard S, Baldet T, Bouyer J. 2019. Sex sorting for pest control: it’s raining men! Trends in Parasitology, 35(8), 649–662. [CrossRef] [PubMed] [Google Scholar]
  28. Maiga H, Bimbile Somda N, Yamada H, Wood O, Damiens D, Mamai W, Balestrino F, Lees R, Dabire R, Diabate A, Gilles J. 2017. Enhancements to the mass-rearing cage for the malaria vector, Anopheles arabiensis for improved adult longevity and egg production. Entomologia Experimentalis et Applicata, 164, 269–275. [Google Scholar]
  29. Maiga H, Damiens D, Diabaté A, Dabiré R, Ouedraogo G, Lees R, Gilles J. 2016. Large-scale Anopheles arabiensis egg quantification methods for mass-rearing operations. Malaria Journal, 15(1), 72. [CrossRef] [PubMed] [Google Scholar]
  30. Maiga H, Mamai W, Somda NB, Konczal A, Wallner T, Herranz G, Herrero R, Yamada H, Bouyer J. 2019. Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus). PLOS Neglected Tropical Diseases, 13(9), e0007775. [CrossRef] [PubMed] [Google Scholar]
  31. Mamai W, Bimbilé Somda N, Maiga H, Juarez J, Zinab A, Ali A, Less R, Gilles J. 2017. Optimization of mosquito egg production under mass rearing setting: effects of cage volume, blood meal source and adult population density for the malaria vector, Anopheles arabiensis. Malaria Journal, 16, 41. [CrossRef] [PubMed] [Google Scholar]
  32. Mamai W, Bimbile Somda N, Maiga H, Konczal A, Wallner T, Bakhoum M, Yamada H, Bouyer J. 2019. Black soldier fly (Hermetia illucens) larvae powder as a larval diet ingredient for mass-rearing Aedes mosquitoes. Parasite, 26, 57. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Mamai W, Lobb L, Bimbilé Somda N, Maiga H, Yamada H, Lees R, Bouyer J, Gilles J. 2018. Optimization of mass-rearing methods for Anopheles arabiensis larval stages: effects of rearing water temperature and larval density on mosquito life-history traits. Journal of Economic Entomology, 111(5), 2383–2390. [CrossRef] [PubMed] [Google Scholar]
  34. Mikery Pacheco O, Serrano-Domínguez K, Marcelín-Chong P, Sánchez-Guillén D. 2015. Efficiency of the separation of Aedes (Stegomyia) albopictus (Diptera: Culicidae) male and female pupae using a sieving device. Acta Zoológica Mexicana, 31(1), 113–115. [Google Scholar]
  35. Morlan H, McCray E, Kilpatrick J. 1962. Field-tests with sexually sterile males for control of Aedes aegypti. Mosquitoes News, 22, 295–300. [Google Scholar]
  36. MR4. 2007. Separating larvae and pupae, in Methods in Anopheles research, 1st edition. Centers for Disease Control and Prevention: Atlanta, GA. [Google Scholar]
  37. Papathanos P, Bourtzis K, Tripet F, Bossin H, Virginio J, Capurro M, Pedrosa M, Guindo A, Sylla L, Coulibaly M, Yao F, Epopa P, Diabate A. 2018. A perspective on the need and current status of efficient sex separation methods for mosquito genetic control. Parasites & Vectors, 11(Suppl. 2), 654. [CrossRef] [PubMed] [Google Scholar]
  38. Puggioli A, Carrieri M, Dindo M, Medici A, Lees R, Gilles J, Bellini R. 2017. Development of Aedes albopictus (Diptera: Culicidae) larvae under different laboratory conditions. Journal of Medical Entomology, 54(1), 142–149. [CrossRef] [PubMed] [Google Scholar]
  39. R Development Core Team. 2008. R Software, version 3.5.2. URL: http://www.R-project.org/. [Google Scholar]
  40. Robinson A, Knols B, Voigt G, Hendrichs J. 2009. Conceptual framework and rationale. Malaria Journal, 8(Suppl. 2), S1. [Google Scholar]
  41. Sharma V, Patterson R, Ford HR. 1972. A device for the rapid separation of male and female mosquito pupae. Bulletin of the World Health Organization, 47(3), 429–443. [PubMed] [Google Scholar]
  42. Snow J, Hofmann H, Baumhover A. 1977. The screwworm as a pest on the island of Jamaica and the feasibility of eradication by the sterile insect technique. Southwestern Entomologist, 2, 202–206. [Google Scholar]
  43. Vreysen M, Saleh K, Ali M, Abdulla A, Zhu Z, Juma K, Dyck V, Msangi A, Mkonyi P, Feldmann H. 2000. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. Journal of Economic Entomology, 93(1), 123–135. [CrossRef] [PubMed] [Google Scholar]
  44. Weidhaas D, Breeland S, Lofgren C, Dame D, Kaiser R. 1974. Release of chemosterilized males for the control of Anopheles albimanus in El Salvador. IV. Dynamics of the test population. American Journal of Tropical Medecine and Hygiene, 23(2), 298–308. [CrossRef] [Google Scholar]
  45. WHO. 2012. Vector resistance to pesticides. WHO/TRS/818. [Google Scholar]
  46. WHO. 2016. Zika virus technical report. Interim risk assessment WHO European Region. Copenhagen: WHO/Europe. Available from http://www.euro.who.int/en/health-topics/emergencies/zika-virus/technical-reports-and-guidelines-on-zika-virus/zika-virus-technical-report.-interim-risk-assessment-for-who-european-region. [Google Scholar]
  47. Yamada H, Maiga H, Juarez J, Carvalho D, Mamai W, Ali A, Bimbile-Somda N, Parker A, Zhang D, Bouyer J. 2019. Identification of critical factors that significantly affect the dose response in mosquitoes irradiated as pupae. Parasites & Vectors, 12, 435. [CrossRef] [PubMed] [Google Scholar]
  48. Zacarés M, Salvador-Herranz G, Almenar D, Tur C, Argilés R, Bourtzis K, Bossin H, Pla I. 2018. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasites & Vectors, 11(Suppl. 2), 656. [CrossRef] [PubMed] [Google Scholar]
  49. Zhang D, Zhang M, Wu Y, Gilles J, Yamada H, Wu Z, Xi Z, Zheng X. 2017. Establishment of a medium-scale mosquito facility: optimization of the larval mass-rearing unit for Aedes albopictus (Diptera: Culicidae). Parasites & Vectors, 10(1), 569. [CrossRef] [PubMed] [Google Scholar]
  50. Zheng M, Zhang D, Damiens D, Lees R, Gilles J. 2015. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) – II – Egg storage and hatching. Parasites & Vectors, 8, 348. [CrossRef] [PubMed] [Google Scholar]
  51. Zheng M, Zhang D, Damiens D, Yamada H, Gilles J. 2015. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) – I – egg quantification. Parasites & Vectors, 8, 42. [CrossRef] [PubMed] [Google Scholar]
  52. Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, Liang Y, Pan X, Hu L, Sun Q, Wang X, Wei Y, Zhu J, Qian W, Yan Z, Parker AG, Gilles JRL, Bourtzis K, Bouyer J, Tang M, Zheng B, Yu J, Liu J, Zhuang J, Hu Z, Zhang M, Gong J-T, Hong X-Y, Zhang Z, Lin L, Liu Q, Hu Z, Wu Z, Baton LA, Hoffmann AA, Xi Z. 2019. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature, 572(7767), 56–61. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.