Open Access
Research Article
Issue
Parasite
Volume 27, 2020
Article Number 22
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2020020
Published online 07 April 2020
  1. Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL. 2010. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne and Zoonotic Diseases, 10, 295–311. [CrossRef] [Google Scholar]
  2. Arrêté No 2019-2213. Autorisant l’IRD à procéder à des lâchers de moustiques stériles en vue d’études entomologiques au sein du quartier Duparc à Sainte-Marie – 13/06/2019. [Google Scholar]
  3. Bagny L, Delatte H, Quilici S, Fontenille D. 2009. Progressive decrease in Aedes aegypti distribution in Reunion Island since the 1900s. Journal of Medical Entomology, 46, 1541–1545. [CrossRef] [PubMed] [Google Scholar]
  4. Bagny Beilhe L, Delatte H, Juliano SA, Fontenille D, Quilici S. 2013. Ecological interactions in Aedes species on Reunion Island. Medical and Veterinary Entomology, 27, 387–397. [CrossRef] [PubMed] [Google Scholar]
  5. Bargielowski I, Lounibos LP. 2014. Rapid evolution of reduced receptivity to interspecific mating in the dengue vector Aedes aegypti in response to satyrization by invasive Aedes albopictus. Evolutionary Ecology, 28, 193–203. [CrossRef] [PubMed] [Google Scholar]
  6. Bargielowski IE, Lounibos LP, Carrasquilla MC. 2013. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proceedings of the National Academy of Sciences of the United States of America, 110, 2888–2892. [CrossRef] [PubMed] [Google Scholar]
  7. Bargielowski IE, Blosser E, Lounibos LP. 2015. The effects of interspecific courtship on the mating success of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) males. Annals of the Entomological Society of America, 108, 513–518. [CrossRef] [PubMed] [Google Scholar]
  8. Bargielowski I, Honório NA, Blosser EM, Lounibos LP. 2019. Rapid loss of resistance to satyrization in invasive mosquitoes and the effects of age on interspecific mating frequency. Journal of Medical Entomology, 56, 329–333. [CrossRef] [PubMed] [Google Scholar]
  9. Bellini R, Albieri A, Balestrino F, Carrieri M, Porretta D, Urbanelli S, Calvitti M, Riccardo MR, Maini S. 2010. Dispersal and survival of Aedes albopictus (Diptera: Culicidae) males in Italian urban areas and significance for sterile insect technique application. Journal of Medical Entomology, 7, 1082–1091. [Google Scholar]
  10. Benedict MQ, Levine RS, Hawley WA, Lounibos LP. 2007. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne and Zoonotic Diseases, 7, 76–85. [CrossRef] [Google Scholar]
  11. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution and burden of dengue. Nature, 496, 504–507. [Google Scholar]
  12. Bouyer J, Yamada H, Pereira R, Bourtzis K, Vreysen MJB. 2020. Phased conditional approach for mosquito management using sterile insect technique. Trends in Parasitology, S1471–4922(20), 30014-3. [Google Scholar]
  13. Burford Reiskind MO, Labadie P, Bargielowski I, Lounibos LP, Reiskind MH. 2018. Rapid evolution and the genomic consequences of selection against interspecific mating. Molecular Ecology, 27, 3641–3654. [CrossRef] [PubMed] [Google Scholar]
  14. Burnham KP, Anderson DR. 2003. Model selection and multimodel inference: a practical information-theoretic approach. Berlin: Springer Science & Business Media. [Google Scholar]
  15. Carrasquilla MC, Lounibos LP. 2015. Satyrization without evidence of successful insemination from interspecific mating between invasive mosquitoes. Biology Letters, 11, 20150527. [CrossRef] [PubMed] [Google Scholar]
  16. Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, Dupont-Rouzeyrol M, Lourenço-de-Oliveira R, Failloux AB. 2016. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus. PLoS Neglected Tropical Diseases, 10, e0004543. [CrossRef] [PubMed] [Google Scholar]
  17. Conseil scientifique de l’Agence française pour la biodiversité – Séance des 26–27 avril 2018 – Délibération n° CS/2018-01. [Google Scholar]
  18. Damiens D, Lebon C, Wilkinson DA, Dijoux-Millet D, Le Goff G, Bheecarry A, Gouagna LC. 2016. Cross-mating compatibility and competitiveness among Aedes albopictus strains from distinct geographic origins – implications for future application of SIT Programs in the South West Indian Ocean Islands. PLoS One, 11, e0163788. [CrossRef] [PubMed] [Google Scholar]
  19. de Araújo TVB, Rodrigues LC, de Alencar Ximenes RA, de Barros Miranda-Filho D, Montarroyos UR, de Melo APL, Valongueiro S, de Albuquerque MFPM, Souza WV, Braga C, Filho SPB, Cordeiro MT, Vazquez E, Di Cavalcanti Souza Cruz D, Henriques CMP, Bezerra LCA, da Silva Castanha PM, Dhalia R, Marques-Júnior ETA, Martelli CMT, Investigators from the Microcephaly Epidemic Research Group, Brazilian Ministry of Health, Pan American Health Organization, Instituto de Medicina Integral Professor Fernando Figueira, State Health Department of Pernambuco. 2016. Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study. Lancet Infectious Diseases, 16, 1356–1363. [CrossRef] [PubMed] [Google Scholar]
  20. Delatte H, Dehecq JS, Thiria J, Domerg C, Paupy C, Fontenille D. 2008. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a Chikungunya epidemic event. Vector Borne and Zoonotic Diseases, 8, 25–34. [CrossRef] [Google Scholar]
  21. Dyck VA, Hendrichs JP, Robinson AS. 2005. The sterile insect technique: principles and practice in area-wide integrated pest management. Dordrecht: Springer. [Google Scholar]
  22. FAO/IAEA. 2017. Guidelines for routine colony maintenance of Aedes mosquito species – version 1.0 [Internet]. p. 18. Available from: https://www.iaea.org/resources/manual/guidelines-for-routine-colony-maintenance-of-aedes-mosquito-species-version-10. [Google Scholar]
  23. Focks DA. 1980. An improved separator for the developmental stages, sexes, and species of mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 17, 567–568. [CrossRef] [PubMed] [Google Scholar]
  24. Friberg M, Leimar O, Wiklund C. 2013. Heterospecific courtship, minority effects and niche separation between cryptic butterfly species. Journal of Evolutionary Biology, 26, 971–979. [CrossRef] [PubMed] [Google Scholar]
  25. Giatropoulos A, Papachristos DP, Koliopoulos G, Michaelakis A, Emmanouel N. 2015. Asymmetric mating interference between two related mosquito species: Aedes (Stegomyia) albopictus and Aedes (Stegomyia) cretinus. PLoS One, 10, e0127762. [CrossRef] [PubMed] [Google Scholar]
  26. HCB Scientific Committee. 2017. Scientific Opinion of the High Council for Biotechnology concerning use of genetically modified mosquitoes for vector control in response to the referral of 12 October 2015 (Ref. HCB-2017.06.07). Paris: HCB. p. 142. Available online: http://www.hautconseildesbiotechnologies.fr. [Google Scholar]
  27. Honma A, Kumano N, Noriyuki S. 2019. Killing two bugs with one stone: a perspective for targeting multiple pest species by incorporating reproductive interference into sterile insect technique. Pest Management Science, 75, 571–577. [CrossRef] [PubMed] [Google Scholar]
  28. Honório NA, Carrasquilla MC, Bargielowski I, Nishimura N, Swan T, Lounibos LP. 2018. Male origin determines satyrization potential of Aedes aegypti by invasive Aedes albopictus. Biological Invasions, 20, 653–664. [Google Scholar]
  29. Hurvich CM, Tsai CL. 1995. Model selection for extended quasi-likelihood models in small samples. Biometrics, 51, 1077–1084. [Google Scholar]
  30. Iyaloo DP, Damiens D, Sunita F, Elahee KB, Bheecarry A. 2019. Dispersal and survival of radio-sterilised male Aedes albopictus Skuse (Diptera: Culicidae) and estimation of the wild populations in view of an sterile insect technique programme in Pointe des Lascars, Mauritius. International Journal of Tropical Insect Science, 39, 63. [Google Scholar]
  31. Juliano SA. 2009. Species interactions among larval mosquitoes: context dependence across habitat gradients. Annual Review of Entomology, 54, 37–56. [CrossRef] [PubMed] [Google Scholar]
  32. Juliano SA, Lounibos LP, O’Meara GF. 2004. A field test for competitive effects of Aedes albopictus on Aedes aegypti in South Florida: differences between sites of coexistence and exclusion? Oecologia, 139, 583–593. [Google Scholar]
  33. Kaplan L, Kendell D, Robertson D, Livdahl T, Khatchikian C. 2010. Aedes aegypti and Aedes albopictus in Bermuda: extinction, invasion, invasion and extinction. Biological Invasions, 12, 3277–3288. [Google Scholar]
  34. Kishi S, Nishida T, Tsubaki Y. 2009. Reproductive interference determines persistence and exclusion in species interactions. Journal of Animal Ecology, 78, 1043–1049. [CrossRef] [Google Scholar]
  35. Knipling EF. 1959. Sterile-male method of population control: successful with some insects, the method may also be effective when applied to other noxious animals. Science, 130, 902–904. [Google Scholar]
  36. Kyle JL, Harris E. 2008. Global spread and persistence of dengue. Annual Review of Microbiology, 62, 71–92. [CrossRef] [PubMed] [Google Scholar]
  37. Levy-Blitchtein S, Del Valle-Mendoza J. 2016. Zika virus is arriving at the American continent. Asian Pacific Journal of Tropical Medicine, 9, 1019–1021. [CrossRef] [PubMed] [Google Scholar]
  38. Lounibos LP. 2002. Invasions by insect vectors of human disease. Annual Review of Entomology, 47, 233–266. [CrossRef] [PubMed] [Google Scholar]
  39. Lounibos LP, Juliano SA. 2018. Where Vectors Collide: the importance of mechanisms shaping the realized niche for modeling ranges of invasive Aedes Mosquitoes. Biological Invasions, 20, 1913–1929. [CrossRef] [PubMed] [Google Scholar]
  40. Lounibos LP, Bargielowski I, Carrasquilla MC, Nishimura N. 2016. Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida two decades after competitive displacements. Journal of Medical Entomology, 53, 1385–1390. [CrossRef] [PubMed] [Google Scholar]
  41. Maïga H, Gilles JRL, Lees RS, Yamada H, Bouyer J. 2020. Demonstration of resistance to satyrization behavior in Aedes aegypti (Linnaeus) from La Réunion island. bioRxiv 2020.02.10.942839. https://doi.og/10.1101/2020.02.10.942839. [Google Scholar]
  42. Marcela P, Abu Hassan A, Hamdan A, Dieng H, Kumara TK. 2015. Interspecific cross-mating between Aedes aegypti and Aedes albopictus laboratory strains: implication of population density on mating behaviors. Journal of the American Mosquito Control Association, 31, 313–320. [CrossRef] [PubMed] [Google Scholar]
  43. Nasci RS, Hare SG, Willis FS. 1989. Interspecific mating between Louisiana strains of Aedes albopictus and Aedes aegypti in the field and laboratory. Journal of the American Mosquito Control Association, 5, 416–421. [PubMed] [Google Scholar]
  44. Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, Hervé JP, Leroy E, Simard F. 2010. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector Borne and Zoonotic Diseases, 10, 259–266. [CrossRef] [Google Scholar]
  45. Ribeiro JMC. 1988. Can satyrs control pests and vectors? Journal of Medical Entomology, 25, 431–440. [CrossRef] [PubMed] [Google Scholar]
  46. RStudio Team. 2016. RStudio: Integrated Development for R. Boston, MA: RStudio Inc. URL: http://www.rstudio.com/. [Google Scholar]
  47. Soghigian J, Gibbs K, Stanton A, Kaiser R, Livdahl T. 2014. Sexual harassment and feeding inhibition between two invasive dengue vectors. Environmental Health Insights, 8, 61–66. [PubMed] [Google Scholar]
  48. Tripet F, Lounibos LP, Robbins D, Moran J, Nishimura N, Blosser EM. 2011. Competitive reduction by satyrization? Evidence for interspecific mating in nature and asymmetric reproductive competition between invasive mosquito vectors. Journal of the American Mosquito Control Association, 85, 265–270. [Google Scholar]
  49. World Health Organization. 2017. Global vector control response 2017–2030. [Google Scholar]
  50. World Health Organization. 2019. Dengue fever – Réunion, France. https://www.who.int/csr/don/01-may-2018-dengue-reunion/en/ (Assessed on 11 Sep 2019). [Google Scholar]
  51. Zheng ML, Zhang DJ, Damiens DD, Lees RS, Gilles JR. 2015. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae). II. Egg storage and hatching. Parasites & Vectors, 8, 348. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.