Open Access
Issue
Parasite
Volume 27, 2020
Article Number 47
Number of page(s) 8
DOI https://doi.org/10.1051/parasite/2020045
Published online 21 July 2020
  1. Aranzamendi C, Fransen F, Langelaar M, Franssen F, van der Ley P, van Putten JP, Rutten V, Pinelli E. 2012. Trichinella spiralis-secreted products modulate DC functionality and expand regulatory T cells in vitro. Parasite Immunology, 34(4), 210–223. [CrossRef] [PubMed] [Google Scholar]
  2. Boonmars T, Wu Z, Nagano I, Nakada T, Takahashi Y. 2004. Differences and similarities of nurse cells in cysts of Trichinella spiralis and T. pseudospiralis. Journal of Helminthology, 78(1), 7–16. [CrossRef] [PubMed] [Google Scholar]
  3. Bosch C, Masachs N, Exposito-Alonso D, Martínez A, Teixeira CM, Fernaud I, Pujadas L, Ulloa F, Comella JX, DeFelipe J, Merchán-Pérez A, Soriano E. 2016. Reelin regulates the maturation of dendritic spines, synaptogenesis and glial ensheathment of newborn granule cells. Cerebral Cortex, 26(11), 4282–4298. [CrossRef] [Google Scholar]
  4. Constantino J, Gomes C, Falcão A, Neves BM, Cruz MT. 2017. Dendritic cell-based immunotherapy: a basic review and recent advances. Journal of Immunology Research, 65(4), 798–810. [Google Scholar]
  5. Cvetkovic J, Sofronic-Milosavljevic L, Ilic N, Gnjatovic M, Nagano I, Gruden-Movsesijan A. 2016. Immunomodulatory potential of particular Trichinella spiralis muscle larvae excretory-secretory components. International Journal for Parasitology, 46(13–14), 833–842. [CrossRef] [PubMed] [Google Scholar]
  6. Della Bella C, Benagiano M, De Gennaro M, Gomez-Morales MA, Ludovisi A, D’Elios S, Luchi S, Pozio E, D’Elios MM, Bruschi F. 2017. T-cell clones in human trichinellosis: Evidence for a mixed Th1/Th2 response. Parasite Immunology, 39(3), e12412. [Google Scholar]
  7. Deluce-Kakwata-Nkor N, Lamendour L, Chabot V, Héraud A, Ivanovic Z, Halary F, Dehaut F, Velge-Roussel F. 2018. Differentiation of human dendritic cell subsets for immune tolerance induction. Transfusion Clinique et Biologique, 25(1), 90–95. [CrossRef] [Google Scholar]
  8. Dudek AM, Martin S, Garg AD, Agostinis P. 2013. Immature, semi-mature, and fully mature dendritic cells: toward a DC-cancer cells interface that augments anticancer immunity. Frontiers in Immunology, 4, 438. [CrossRef] [PubMed] [Google Scholar]
  9. Eissa MM, Ismail CA, El-Azzouni MZ, Ghazy AA, Hadi MA. 2019. Immuno-therapeutic potential of Schistosoma mansoni and Trichinella spiralis antigens in a murine model of colon cancer. Investigational New Drugs, 37(1), 47–56. [CrossRef] [PubMed] [Google Scholar]
  10. Eyileten C, Majchrzak K, Pilch Z, Tonecka K, Mucha J, Taciak B, Ulewicz K, Witt K, Boffi A, Krol M, Rygiel TP. 2016. Immune cells in cancer therapy and drug delivery. Mediators of Inflammation, 2016, 5230219. [CrossRef] [PubMed] [Google Scholar]
  11. Gardner A, Ruffell B. 2016. Dendritic cells and cancer immunity. Trends in Immunology, 37(12), 855–865. [CrossRef] [PubMed] [Google Scholar]
  12. Ilic N, Colic M, Gruden-movsesijan A, Majstorovic I, Vasilev S, Sofronic-Milosavljevic L. 2008. Characterization of rat bone marrow dendritic cells initially primed by Trichinella spiralis antigens. Parasite Immunology, 30(9), 491–495. [CrossRef] [PubMed] [Google Scholar]
  13. Ilic N, Worthington JJ, Gruden-Movsesijan A, Travis MA, Sofronic-Milosavljevic L, Grencis RK. 2011. Trichinella spiralis antigens prime mixed Th1/Th2 response but do not induce de novo generation of Foxp3+ T cells in vitro. Parasite Immunology, 33(10), 572–582. [CrossRef] [PubMed] [Google Scholar]
  14. Jasmer DP. 1993. Trichinella spiralis infected skeletal muscle cells arrest in G2/M and cease muscle gene expression. Journal of Cell Biology, 121(4), 785–793. [CrossRef] [Google Scholar]
  15. Kang SA, Park MK, Park SK, Choi JH, Lee DI, Song SM, Yu HS. 2019. Adoptive transfer of Trichinella spiralis-activated macrophages can ameliorate both Th1- and Th2-activated inflammation in murine models. Scientific Reports, 9(1), 6547. [CrossRef] [PubMed] [Google Scholar]
  16. Kang YJ, Jo JO, Cho MK, Yu HS, Leem SH, Song KS, Ock MS, Cha HJ. 2013. Trichinella spiralis infection reduces tumor growth and metastasis of B16–F10 melanoma cells. Veterinary Parasitology, 196(1–2), 106–113. [CrossRef] [PubMed] [Google Scholar]
  17. Keller CW, Freigang S, Lünemann JD. 2017. Reciprocal crosstalk between dendritic cells and natural killer t cells: mechanisms and therapeutic potential. Frontiers in Immunology, 8, 570. [CrossRef] [PubMed] [Google Scholar]
  18. Kumar C, Kohli S, Bapsy PP, Vaid AK, Jain M, Attili VS, Sharan B. 2017. Immune modulation by dendritic-cell-based cancer vaccines. Journal of Biosciences, 42(1), 161–173. [CrossRef] [PubMed] [Google Scholar]
  19. Laurent F, Lacroix-Lamandé S. 2017. Innate immune responses play a key role in controlling infection of the intestinal epithelium by Cryptosporidium. International Journal for Parasitology, 47(12), 711–721. [CrossRef] [PubMed] [Google Scholar]
  20. Lee SH, Kim SS, Lee DH, Kim AR, Quan FS. 2016. Evaluation of protective efficacy induced by virus-like particles containing a Trichinella spiralis excretory-secretory (ES) protein in mice. Parasites & Vectors, 9(1), 384. [CrossRef] [PubMed] [Google Scholar]
  21. Li T, LoRusso P, Maitland ML, Ou SH, Bahceci E, Ball HA, Park JW, Yuen G, Tolcher A. 2016. First-in-human, open-label dose-escalation and dose-expansion study of the safety, pharmacokinetics, and antitumor effects of an oral ALK inhibitor ASP3026 in patients with advanced solid tumors. Journal of Hematology & Oncology, 9, 23. [CrossRef] [PubMed] [Google Scholar]
  22. Lin TJ, Liang WM, Hsiao PW, Pradeep MS, Wei WC, Lin HT, Yin SY, Yang NS. 2015. Rapamycin Promotes Mouse 4T1 Tumor metastasis that can be reversed by a dendritic cell-based vaccine. PLoS One, 10(10), e0138335. [CrossRef] [PubMed] [Google Scholar]
  23. Ling N, Zhou X, Ji Y, Li W, Ji C, Qi Z. 2017. Immuno-modulatory and cellular antioxidant activities of κ-selenocarrageenan in combination with Epirubicin in H22 hepatoma-bearing mice. Biomedicine & Pharmacotherapy, 91, 132–137. [CrossRef] [Google Scholar]
  24. Luo J, Yu L, Xie G, Li D, Su M, Zhao X, Du L. 2017. Study on the mitochondrial apoptosis pathways of small cell lung cancer H446 cells induced by Trichinella spiralis muscle larvae ESPs. Parasitology, 144(6), 793–800. [CrossRef] [PubMed] [Google Scholar]
  25. Mbongue JC, Nieves HA, Torrez TW, Langridge WH. 2017. The role of dendritic cell maturation in the induction of insulin-dependent diabetes mellitus. Frontiers in Immunology, 8, 327. [CrossRef] [PubMed] [Google Scholar]
  26. Mizukoshi E, Kaneko S. 2019. Immune cell therapy for hepatocellular carcinoma. Journal of Hematology & Oncology, 12(1), 52. [CrossRef] [PubMed] [Google Scholar]
  27. Molinari JA, Ebersole JL. 1977. Antineoplastic effects of long-term Trichinella spiralis infection on B-16 melanoma. International Archives of Allergy and Immunology, 55(1–6), 444–448. [Google Scholar]
  28. Niu JX, Guo HP, Gan HM, Bao LD, Ren JJ. 2015. Effect of luteolin on gene expression in mouse H22 hepatoma cells. Genetics and Molecular Research, 14(4), 14448–14456. [CrossRef] [Google Scholar]
  29. Nocera NF, Lee MC, De La Cruz LM, Rosemblit C, Czerniecki BJ. 2016. Restoring lost anti-HER-2 Th1 immunity in breast cancer: a crucial role for th1 cytokines in therapy and prevention. Frontiers in Pharmacology, 7, 356. [CrossRef] [PubMed] [Google Scholar]
  30. Oth T, Vanderlocht J, Van Elssen CH, Bos GM, Germeraad WT. 2016. Pathogen-associated molecular patterns induced crosstalk between dendritic cells, T helper cells, and natural killer helper cells can improve dendritic cell vaccination. Mediators of Inflammation, 2016, 5740373. [PubMed] [Google Scholar]
  31. Parasuraman S, Raveendran R, Kesavan R. 2010. Blood sample collection in small laboratory animals. Journal of Pharmacology & Pharmacotherapeutics, 1(2), 87–93. [CrossRef] [PubMed] [Google Scholar]
  32. Said A, Weindl G. 2015. Regulation of dendritic cell function in inflammation. Journal of Immunology Research, 2015, 743169. [CrossRef] [PubMed] [Google Scholar]
  33. Schülke S. 2018. Induction of Interleukin-10 Producing dendritic cells as a tool to suppress allergen-specific T helper 2 responses. Frontiers in Immunology, 9, 455. [CrossRef] [PubMed] [Google Scholar]
  34. Sofronic-Milosavljevic L, Ilic N, Pinelli E, Gruden-Movsesijan A. 2015. Secretory products of Trichinella spiralis muscle larvae and immunomodulation: implication for autoimmune diseases, allergies, and malignancies. Journal of Immunology Research, 2015, 523875. [CrossRef] [PubMed] [Google Scholar]
  35. Song Y, Xu J, Wang X, Yang Y, Bai X, Pang J, Wang X, Yu M, Liu M, Liu X, Sun S. 2019. Regulation of host immune cells and cytokine production induced by Trichinella spiralis infection. Parasite, 26, 74. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Sun K, Wang L, Zhang Y. 2006. Dendritic cell as therapeutic vaccines against tumors and its role in therapy for hepatocellular carcinoma. Cellular & Molecular Immunology, 3(3), 197–203. [PubMed] [Google Scholar]
  37. Taher MY, Davies DM, Maher J. 2018. The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochemical Society Transactions, 46(6), 1449–1462. [CrossRef] [PubMed] [Google Scholar]
  38. Tang M, Diao J, Cattral MS. 2017. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cellular and Molecular Life Sciences, 74(5), 761–776. [CrossRef] [Google Scholar]
  39. Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. 2017. Proliferation and motility of hepatocellular, pancreatic and gastric cancer cells grown in a medium without glucose and arginine, but with galactose and ornithine. Oncology Letters, 13(3), 1276–1280. [CrossRef] [PubMed] [Google Scholar]
  40. Truxova I, Kasikova L, Hensler M, Skapa P, Laco J, Pecen L, Belicova L, Praznovec I, Halaska MJ, Brtnicky T, Salkova E, Rob L, Kodet R, Goc J, Sautes-Fridman C, Fridman WH, Ryska A, Galluzzi L, Spisek R, Fucikova J. 2018. Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. Journal for ImmunoTherapy of Cancer, 6(1), 139. [CrossRef] [PubMed] [Google Scholar]
  41. Ul-Haq Z, Naz S, Mesaik MA. 2016. Interleukin-4 receptor signaling and its binding mechanism: A therapeutic insight from inhibitors tool box. Cytokine & Growth Factor Reviews, 32, 3–15. [CrossRef] [PubMed] [Google Scholar]
  42. Van Acker HH, Versteven M, Lichtenegger FS, Roex G, Campillo-Davo D, Lion E, Subklewe M, Van Tendeloo VF, Berneman ZN, Anguille S. 2019. Dendritic cell-based immunotherapy of acute myeloid leukemia. Journal of Clinical Medicine, 8(5), 579. [Google Scholar]
  43. Vasilev S, Ilic N, Gruden-Movsesijan A, Vasilijic S, Bosic M, Sofronic-Milosavljevic L. 2015. Necrosis and apoptosis in Trichinella spiralis-mediated tumour reduction. Central-European Journal of Immunology, 40(1), 42–53. [CrossRef] [PubMed] [Google Scholar]
  44. Wang XL, Fu BQ, Yang SJ, Wu XP, Cui GZ, Liu MF, Zhao Y, Yu YL, Liu XY, Deng HK, Chen QJ, Liu MY. 2009. Trichinella spiralis – a potential anti-tumor agent. Veterinary Parasitology, 159(3–4), 249–252. [CrossRef] [PubMed] [Google Scholar]
  45. Wang XL, Liu MY, Sun SM, Liu XL, Yu L, Wang XR, Chu LX, Rosenthal B, Shi HN, Boireau P, Wang F, Zhao Y, Wu XP. 2013. An anti-tumor protein produced by Trichinella spiralis induces apoptosis in human hepatoma H7402 cells. Veterinary Parasitology, 194(2–4), 186–188. [CrossRef] [PubMed] [Google Scholar]
  46. Wylie B, Macri C, Mintern JD, Waithman J. 2019. Dendritic cells and cancer: from biology to therapeutic intervention. Cancers (Basel), 11(4), 521. [Google Scholar]
  47. Zhang XH, Zhao C, Seleznev K, Song K, Manfredi JJ, Ma ZA. 2006. Disruption of G1-phase phospholipid turnover by inhibition of Ca2+-independent phospholipase A2 induces a p53-dependent cell-cycle arrest in G1 phase. Journal of Cell Science, 119(Pt 6), 1005–1015. [CrossRef] [PubMed] [Google Scholar]
  48. Zhang Z, Mao Y, Li D, Zhang Y, Li W, Jia H, Zheng J, Li L, Lu Y. 2016. High-level expression and characterization of two serine protease inhibitors from Trichinella spiralis. Veterinary Parasitology, 219, 34–39. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.