Open Access
Volume 27, 2020
Article Number 26
Number of page(s) 10
Published online 21 April 2020
  1. Behnke MS, Khan A, Lauron EJ, Jimah JR, Wang Q, Tolia NH, Sibley LD. 2015. Rhoptry proteins ROP5 and ROP18 are major murine virulence factors in genetically divergent south american strains of Toxoplasma gondii. PLoS Genetics, 11(8), e1005434. [CrossRef] [PubMed] [Google Scholar]
  2. Bonilla WV, Frohlich A, Senn K, Kallert S, Fernandez M, Johnson S, Kreutzfeldt M, Hegazy AN, Schrick C, Fallon PG, Klemenz R, Nakae S, Adler H, Merkler D, Lohning M, Pinschewer DD. 2012. The alarmin interleukin-33 drives protective antiviral CD8(+) T cell responses. Science, 335(6071), 984–989. [Google Scholar]
  3. Chen J, Li ZY, Petersen E, Huang SY, Zhou DH, Zhu XQ. 2015. DNA vaccination with genes encoding Toxoplasma gondii antigens ROP5 and GRA15 induces protective immunity against toxoplasmosis in Kunming mice. Expert Review of Vaccines, 14(4), 617–624. [CrossRef] [PubMed] [Google Scholar]
  4. Chen J, Li ZY, Petersen E, Liu WG, Zhu XQ. 2016. Co-administration of interleukins 7 and 15 with DNA vaccine improves protective immunity against Toxoplasma gondii. Experimental Parasitology, 162, 18–23. [CrossRef] [PubMed] [Google Scholar]
  5. Chen Y, Yu M, Hemandez JA, Li J, Yuan ZG, Yan H. 2018. Immuno-efficacy of DNA vaccines encoding PLP1 and ROP18 against experimental Toxoplasma gondii infection in mice. Experimental Parasitology, 188, 73–78. [CrossRef] [PubMed] [Google Scholar]
  6. Decker WK, Safdar A. 2011. Cytokine adjuvants for vaccine therapy of neoplastic and infectious disease. Cytokine & Growth Factor Reviews, 22(4), 177–187. [CrossRef] [PubMed] [Google Scholar]
  7. Dupont CD, Christian DA, Hunter CA. 2012. Immune response and immunopathology during toxoplasmosis. Seminars in Immunopathology, 34(6), 793–813. [CrossRef] [PubMed] [Google Scholar]
  8. Etheridge RD, Alaganan A, Tang K, Lou HJ, Turk BE, Sibley LD. 2014. The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host & Microbe, 15(5), 537–550. [CrossRef] [PubMed] [Google Scholar]
  9. Gigley JP, Fox BA, Bzik DJ. 2009. Cell-mediated immunity to Toxoplasma gondii develops primarily by local Th1 host immune responses in the absence of parasite replication. Journal of Immunology, 182(2), 1069–1078. [CrossRef] [Google Scholar]
  10. Grzybowski MM, Dziadek B, Gatkowska JM, Dzitko K, Dlugonska H. 2015. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins. Parasitology Research, 114(12), 4553–4563. [CrossRef] [PubMed] [Google Scholar]
  11. Hakimi MA, Olias P, Sibley LD. 2017. Toxoplasma effectors targeting host signaling and transcription. Clinical Microbiology Reviews, 30(3), 615–645. [CrossRef] [PubMed] [Google Scholar]
  12. Jongert E, Lemiere A, Van Ginderachter J, De Craeye S, Huygen K, D’Souza S. 2010. Functional characterization of in vivo effector CD4(+) and CD8(+) T cell responses in acute toxoplasmosis: an interplay of IFN-gamma and cytolytic T cells. Vaccine, 28(13), 2556–2564. [CrossRef] [PubMed] [Google Scholar]
  13. Khan IA, Matsuura T, Kasper LH. 1994. Interleukin-12 enhances murine survival against acute toxoplasmosis. Infection and Immunity, 62(5), 1639–1642. [CrossRef] [PubMed] [Google Scholar]
  14. Kochanowsky JA, Koshy AA. 2018. Toxoplasma gondii. Current Biology, 8(14), R770–R771. [CrossRef] [Google Scholar]
  15. LaRosa DF, Stumhofer JS, Gelman AE, Rahman AH, Taylor DK, Hunter CA, Turka LA. 2008. T cell expression of MyD88 is required for resistance to Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3855–3860. [CrossRef] [PubMed] [Google Scholar]
  16. Lee SH, Kang HJ, Lee DH, Kang SM, Quan FS. 2018. Virus-like particle vaccines expressing Toxoplasma gondii rhoptry protein 18 and microneme protein 8 provide enhanced protection. Vaccine, 36(38), 5692–5700. [CrossRef] [PubMed] [Google Scholar]
  17. Li ZY, Chen J, Petersen E, Zhou DH, Huang SY, Song HQ, Zhu XQ. 2014. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice. Vaccine, 32(25), 3058–3065. [CrossRef] [PubMed] [Google Scholar]
  18. Li ZY, Lu J, Zhang NZ, Elsheikha HM, Hou JL, Guo HT, Zhu XQ. 2018. Immunization with plasmid DNA expressing Heat Shock Protein 40 confers prophylactic protection against chronic Toxoplasma gondii infection in Kunming mice. Parasite, 25, 37. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Liew FY, Pitman NI, McInnes IB. 2010. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nature Reviews Immunology, 10(2), 103–110. [CrossRef] [PubMed] [Google Scholar]
  20. Liu MA. 2011. DNA vaccines: an historical perspective and view to the future. Immunological Reviews, 239(1), 62–84. [CrossRef] [PubMed] [Google Scholar]
  21. Matowicka-Karna J, Dymicka-Piekarska V, Kemona H. 2009. Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha)? Clinical & Developmental Immunology, 2009, 374696. [CrossRef] [PubMed] [Google Scholar]
  22. Petersen E, Kijlstra A, Stanford M. 2012. Epidemiology of ocular toxoplasmosis. Ocular Immunology and Inflammation, 20(2), 68–75. [CrossRef] [PubMed] [Google Scholar]
  23. Robert-Gangneux F, Darde ML. 2012. Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical Microbiology Reviews, 25(2), 264–296. [CrossRef] [PubMed] [Google Scholar]
  24. Sayles PC, Gibson GW, Johnson LL. 2000. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii. Infection and Immunity, 68(3), 1026–1033. [CrossRef] [PubMed] [Google Scholar]
  25. Schijns VE, Lavelle EC. 2011. Trends in vaccine adjuvants. Expert Review of Vaccines, 10(4), 539–550. [CrossRef] [PubMed] [Google Scholar]
  26. Shwab EK, Jiang T, Pena HF, Gennari SM, Dubey JP, Su C. 2016. The ROP18 and ROP5 gene allele types are highly predictive of virulence in mice across globally distributed strains of Toxoplasma gondii. International Journal for Parasitology, 46(2), 141–146. [CrossRef] [PubMed] [Google Scholar]
  27. Suschak JJ, Williams JA, Schmaljohn CS. 2017. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Human Vaccines & Immunotherapeutics, 13(12), 2837–2848. [CrossRef] [PubMed] [Google Scholar]
  28. Tenter AM, Heckeroth AR, Weiss LM. 2000. Toxoplasma gondii: from animals to humans. International Journal for Parasitology, 30(12–13), 1217–1258. [CrossRef] [PubMed] [Google Scholar]
  29. Villarreal DO, Weiner DB. 2014. Interleukin 33: a switch-hitting cytokine. Current Opinion in Immunology, 28, 102–106. [CrossRef] [PubMed] [Google Scholar]
  30. Villarreal DO, Wise MC, Walters JN, Reuschel EL, Choi MJ, Obeng-Adjei N, Yan J, Morrow MP, Weiner DB. 2014. Alarmin IL-33 acts as an immunoadjuvant to enhance antigen-specific tumor immunity. Cancer Research, 74(6), 1789–1800. [CrossRef] [PubMed] [Google Scholar]
  31. Villarreal DO, Svoronos N, Wise MC, Shedlock DJ, Morrow MP, Conejo-Garcia JR, Weiner DB. 2015. Molecular adjuvant IL-33 enhances the potency of a DNA vaccine in a lethal challenge model. Vaccine, 33(35), 4313–4320. [CrossRef] [PubMed] [Google Scholar]
  32. Wang L, Lu G, Zhou A, Han Y, Guo J, Zhou H, Cong H, He S. 2016. Evaluation of immune responses induced by rhoptry protein 5 and rhoptry protein 7 DNA vaccines against Toxoplasma gondii. Parasite Immunology, 38(4), 209–217. [CrossRef] [PubMed] [Google Scholar]
  33. Wang ZD, Liu HH, Ma ZX, Ma HY, Li ZY, Yang ZB, Zhu XQ, Xu B, Wei F, Liu Q. 2017. Toxoplasma gondii infection in immunocompromised patients: a systematic review and meta-analysis. Frontiers in Microbiology, 8, 389. [PubMed] [Google Scholar]
  34. Wohlfert EA, Blader IJ, Wilson EH. 2017. Brains and brawn: Toxoplasma infections of the central nervous system and skeletal muscle. Trends in Parasitology, 33(7), 519–531. [CrossRef] [PubMed] [Google Scholar]
  35. Xu Y, Zhang NZ, Tan QD, Chen J, Lu J, Xu QM, Zhu XQ. 2014. Evaluation of immuno-efficacy of a novel DNA vaccine encoding Toxoplasma gondii rhoptry protein 38 (TgROP38) against chronic toxoplasmosis in a murine model. BMC Infectious Diseases, 14, 525. [CrossRef] [PubMed] [Google Scholar]
  36. Yan HK, Yuan ZG, Petersen E, Zhang XX, Zhou DH, Liu Q, He Y, Lin RQ, Xu MJ, Chen XL, Zhong XL, Zhu XQ. 2011. Toxoplasma gondii: protective immunity against experimental toxoplasmosis induced by a DNA vaccine encoding the perforin-like protein 1. Experimental Parasitology, 128(1), 38–43. [CrossRef] [PubMed] [Google Scholar]
  37. Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. 2013. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Review of Vaccines, 12(11), 1287–1299. [CrossRef] [PubMed] [Google Scholar]
  38. Zhang NZ, Huang SY, Xu Y, Chen J, Wang JL, Tian WP, Zhu XQ. 2014. Evaluation of immune responses in mice after DNA immunization with putative Toxoplasma gondii calcium-dependent protein kinase 5. Clinical and Vaccine Immunology, 21(7), 924–929. [CrossRef] [Google Scholar]
  39. Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. 2015. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Review of Vaccines, 14(12), 1609–1621. [CrossRef] [PubMed] [Google Scholar]
  40. Zhang NZ, Gao Q, Wang M, Elsheikha HM, Wang B, Wang JL, Zhang FK, Hu LY, Zhu XQ. 2018. Immunization with a DNA vaccine cocktail encoding TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes protects mice against chronic toxoplasmosis. Frontiers in Immunology, 9, 1505. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.