Open Access
Issue
Parasite
Volume 27, 2020
Article Number 34
Number of page(s) 14
DOI https://doi.org/10.1051/parasite/2020034
Published online 15 May 2020
  1. Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP. 1999. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology, 119, 113–125. [CrossRef] [PubMed] [Google Scholar]
  2. Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP. 2000. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Molecular Biology and Evolution, 17, 1467–1482. [CrossRef] [PubMed] [Google Scholar]
  3. Arnaud MB, Costanzo MC, Shah P, Skrzypek MS, Sherlock G. 2009. Gene Ontology and the annotation of pathogen genomes: the case of Candida albicans. Trends in Microbiology, 17(7), 295–303. [CrossRef] [PubMed] [Google Scholar]
  4. Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ Jr, Treatman C, Wang H. 2009. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Research, 37(Database issue), D539–D543. [CrossRef] [PubMed] [Google Scholar]
  5. Bethke L, Thomas S, Walker K, Lakhia R, Rangarajan R, Wirth D. 2007. The role of DNA mismatch repair in generating genetic diversity and drug resistance in malaria parasites. Molecular and Biochemical Parasitology, 155(1), 18–25. [CrossRef] [PubMed] [Google Scholar]
  6. Brehelin L, Dufayard JF, Gascuel O. 2008. PlasmoDraft: a database of Plasmodium falciparum gene function predictions based on postgenomic data. BMC Bioinformatics, 9, 440. [CrossRef] [PubMed] [Google Scholar]
  7. Castagnone-Sereno P, Danchin EG, Deleury E, Guillemaud T, Malausa T, Abad P. 2010. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics, 11, 598. [CrossRef] [PubMed] [Google Scholar]
  8. Chen M, Zeng G, Tan Z, Jiang M, Zhang J, Zhang C, Lu L, Lin Y, Peng J. 2011. Compound microsatellites in complete Escherichia coli genomes. FEBS Letters, 585, 1072–1076. [CrossRef] [PubMed] [Google Scholar]
  9. Cochrane AH, Collins WE, Nussenzweig RS. 1984. Monoclonal antibody identifies circumsporozoite protein of Plasmodium malariae and detects a common epitope on Plasmodium brasilianum sporozoites. Infection and Immunity, 45(3), 592–595. [CrossRef] [PubMed] [Google Scholar]
  10. Dallas JF. 1992. Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mammalian Genome, 3, 452–456. [CrossRef] [Google Scholar]
  11. Davies HM, Thalassinos K, Osborne AR. 2016. Expansion of lysine-rich repeats in Plasmodium proteins generates novel localization sequences that target the periphery of the host erythrocyte. Journal of Biological Chemistry, 291, 26,188–26,207. [CrossRef] [Google Scholar]
  12. Douglas NM, Lampah DA, Kenangalem E, Simpson JA, Poespoprodjo JR, Sugiarto P, Anstey NM, Price RN. 2013. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Medicine, 10, e1001575. [CrossRef] [PubMed] [Google Scholar]
  13. Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 5, 435–445. [CrossRef] [PubMed] [Google Scholar]
  14. Fan H, Chu JY. 2007. A brief review of short tandem repeat mutation. Genomics, Proteomics & Bioinformatics, 5, 7–14. [CrossRef] [PubMed] [Google Scholar]
  15. Felten A, Vila Nova M, Durimel K, Guillier L, Mistou MY, Radomski N. 2017. First gene-ontology enrichment analysis based on bacterial coregenome variants: insights into adaptations of Salmonella serovars to mammalian- and avian-hosts. BMC Microbiology, 17(1), 222. [CrossRef] [PubMed] [Google Scholar]
  16. Figan CE, Sa JM, Mu J, Melendez-Muniz VA, Liu CH, Wellems TE. 2018. A set of microsatellite markers to differentiate Plasmodium falciparum progeny of four genetic crosses. Malaria Journal, 17(1), 60. [CrossRef] [PubMed] [Google Scholar]
  17. Gilles HM, Hendrickse RG. 1963. Nephrosis in Nigerian children. Role of Plasmodium malariae, and effect of antimalarial treatment. British Medical Journal, 2, 27–31. [CrossRef] [PubMed] [Google Scholar]
  18. Gillings MR, Westoby M. 2014. DNA technology and evolution of the Central Dogma. Trends in Ecology & Evolution, 29, 1–2. [CrossRef] [PubMed] [Google Scholar]
  19. Gomez JC, McNamara DT, Bockarie MJ, Baird JK, Carlton JM, Zimmerman PA. 2003. Identification of a polymorphic Plasmodium vivax microsatellite marker. American Journal of Tropical Medicine and Hygiene, 69(4), 377–379. [CrossRef] [Google Scholar]
  20. Greenhouse B, Myrick A, Dokomajilar C, Woo JM, Carlson EJ, Rosenthal PJ, Dorsey G. 2006. Validation of microsatellite markers for use in genotyping polyclonal Plasmodium falciparum infections. American Journal of Tropical Medicine and Hygiene, 75(5), 836–842. [CrossRef] [Google Scholar]
  21. Groger M, Veletzky L, Lalremruata A, Cattaneo C, Mischlinger J, Manego Zoleko R, Kim J, Klicpera A, Meyer EL, Blessborn D, Winterberg M, Adegnika AA, Agnandji ST, Kremsner PG, Mordmuller B, Mombo-Ngoma G, Fuehrer HP, Ramharter M. 2019. Prospective clinical and molecular evaluation of potential Plasmodium ovale curtisi and wallikeri relapses in a high-transmission setting. Clinical Infectious Diseases, 69(12), 2119–2126. [CrossRef] [Google Scholar]
  22. Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ. 2011. Current trends in microsatellite genotyping. Molecular Ecology Resources, 11, 591–611. [CrossRef] [PubMed] [Google Scholar]
  23. Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, Kwiatkowski D. 2017. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Research, 45, 1889–1901. [PubMed] [Google Scholar]
  24. Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, Newton PN, Kim JR, Nandy A, Osorio L, Carlton JM, White NJ, Day NP, Anderson TJ. 2007. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. International Journal for Parasitology, 37, 1013–1022. [CrossRef] [PubMed] [Google Scholar]
  25. Jarne P, Lagoda PJ. 1996. Microsatellites, from molecules to populations and back. Trends in Ecology & Evolution, 11, 424–429. [CrossRef] [PubMed] [Google Scholar]
  26. Katti MV, Sami-Subbu R, Ranjekar PK, Gupta VS. 2000. Amino acid repeat patterns in protein sequences: their diversity and structural-functional implications. Protein Science, 9, 1203–1209. [CrossRef] [Google Scholar]
  27. Koepfli C, Mueller I, Marfurt J, Goroti M, Sie A, Oa O, Genton B, Beck HP, Felger I. 2009. Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. Journal of Infectious Diseases, 199(7), 1074–1080. [CrossRef] [Google Scholar]
  28. Lai Y, Sun F. 2003. The relationship between microsatellite slippage mutation rate and the number of repeat units. Molecular Biology and Evolution, 20, 2123–2131. [CrossRef] [PubMed] [Google Scholar]
  29. Langford S, Douglas NM, Lampah DA, Simpson JA, Kenangalem E, Sugiarto P, Anstey NM, Poespoprodjo JR, Price RN. 2015. Plasmodium malariae infection associated with a high burden of anemia: a hospital-based surveillance study. PLoS Neglected Tropical Diseases, 9, e0004195. [CrossRef] [PubMed] [Google Scholar]
  30. Levinson G, Gutman GA. 1987. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Research, 15, 5323–5338. [CrossRef] [PubMed] [Google Scholar]
  31. Liu Y, Zhou RM, Zhang YL, Wang DQ, Li SH, Yang CY, Qian D, Zhao YL, Zhang HW, Xu BL. 2018. Analysis of polymorphisms in the circumsporozoite protein gene of Plasmodium vivax isolates from Henan Province, China. Malaria Journal, 17(1), 103. [CrossRef] [PubMed] [Google Scholar]
  32. Lo E, Nguyen K, Nguyen J, Hemming-Schroeder E, Xu J, Etemesi H, Githeko A, Yan G. 2017. Plasmodium malariae prevalence and csp gene diversity, Kenya, 2014 and 2015. Emerging Infectious Diseases, 23(4), 601–610. [CrossRef] [PubMed] [Google Scholar]
  33. Lover AA, Baird JK, Gosling R, Price RN. 2018. Malaria elimination: time to target all species. American Journal of Tropical Medicine and Hygiene, 99(1), 17–23. [CrossRef] [Google Scholar]
  34. Mathema VB, Dondorp AM, Imwong M. 2019. OSTRFPD: Multifunctional tool for genome-wide short tandem repeat analysis for DNA, transcripts, and amino acid sequences with integrated primer designer. Evolutionary Bioinformatics Online, 15, 1176934319843130. [PubMed] [Google Scholar]
  35. Mayer C. 2010. Phobos – a tandem repeat search tool for complete genomes. http://www.ruhr-uni-bochum.de/spezzoo/cm. Accessed on 25 April 2018. [Google Scholar]
  36. Mendes TA, Lobo FP, Rodrigues TS, Rodrigues-Luiz GF, daRocha WD, Fujiwara RT, Teixeira SM, Bartholomeu DC. 2013. Repeat-enriched proteins are related to host cell invasion and immune evasion in parasitic protozoa. Molecular Biology and Evolution, 30, 951–963. [CrossRef] [PubMed] [Google Scholar]
  37. Menegon M, Bardaji A, Martinez-Espinosa F, Botto-Menezes C, Ome-Kaius M, Mueller I, Betuela I, Arevalo-Herrera M, Kochar S, Kochar SK, Jaju P, Hans D, Chitnis C, Padilla N, Castellanos ME, Ortiz L, Sanz S, Piqueras M, Desai M, Mayor A, Del Portillo H, Menendez C, Severini C. 2016. Microsatellite genotyping of Plasmodium vivax isolates from pregnant women in four malaria endemic countries. PloS One, 11(3), e0152447. [CrossRef] [PubMed] [Google Scholar]
  38. Metzgar D, Bytof J, Wills C. 2000. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Research, 10, 72–80. [PubMed] [Google Scholar]
  39. Milner DA Jr. 2018. Malaria pathogenesis. Cold Spring Harbor Perspectives in Medicine, 8(1), a025569. [CrossRef] [PubMed] [Google Scholar]
  40. Mueller I, Zimmerman PA, Reeder JC. 2007. Plasmodium malariae and Plasmodium ovale – the “bashful” malaria parasites. Trends in Parasitology, 23(6), 278–283. [CrossRef] [PubMed] [Google Scholar]
  41. Nino CH, Cubides JR, Camargo-Ayala PA, Rodriguez-Celis CA, Quinones T, Cortes-Castillo MT, Sanchez-Suarez L, Sanchez R, Patarroyo ME, Patarroyo MA. 2016. Plasmodium malariae in the Colombian Amazon region: you don’t diagnose what you don’t suspect. Malaria Journal, 15, 576. [CrossRef] [PubMed] [Google Scholar]
  42. Nojadeh JN, Behrouz Sharif S, Sakhinia E. 2018. Microsatellite instability in colorectal cancer. EXCLI Journal, 17, 159–168. [PubMed] [Google Scholar]
  43. Oguike MC, Betson M, Burke M, Nolder D, Stothard JR, Kleinschmidt I, Proietti C, Bousema T, Ndounga M, Tanabe K, Ntege E, Culleton R, Sutherland CJ. 2011. Plasmodium ovale curtisi and Plasmodium ovale wallikeri circulate simultaneously in African communities. International Journal for Parasitology, 41(6), 677–683. [CrossRef] [PubMed] [Google Scholar]
  44. Olson M, Hood L, Cantor C, Botstein D. 1989. A common language for physical mapping of the human genome. Science, 245(4925), 1434–1435. [Google Scholar]
  45. Orjuela-Sanchez P, Sa JM, Brandi MC, Rodrigues PT, Bastos MS, Amaratunga C, Duong S, Fairhurst RM, Ferreira MU. 2013. Higher microsatellite diversity in Plasmodium vivax than in sympatric Plasmodium falciparum populations in Pursat, Western Cambodia. Experimental Parasitology, 134(3), 318–326. [CrossRef] [PubMed] [Google Scholar]
  46. Oyebola MK, Idowu ET, Nyang H, Olukosi YA, Otubanjo OA, Nwakanma DC, Awolola ST, Amambua-Ngwa A. 2014. Microsatellite markers reveal low levels of population sub-structuring of Plasmodium falciparum in southwestern Nigeria. Malaria Journal, 13, 493. [CrossRef] [PubMed] [Google Scholar]
  47. Roman DNR, Rosalie NNA, Kumar A, Luther KMM, Singh V, Albert MS. 2018. Asymptomatic Plasmodium malariae infections in children from suburban areas of Yaounde, Cameroon. Parasitology International, 67(1), 29–33. [CrossRef] [PubMed] [Google Scholar]
  48. Roucher C, Rogier C, Sokhna C, Tall A, Trape JF. 2014. A 20-year longitudinal study of Plasmodium ovale and Plasmodium malariae prevalence and morbidity in a West African population. PloS One, 9(2), e87169. [CrossRef] [PubMed] [Google Scholar]
  49. Rutledge GG, Bohme U, Sanders M, Reid AJ, Cotton JA, Maiga-Ascofare O, Djimde AA, Apinjoh TO, Amenga-Etego L, Manske M, Barnwell JW, Renaud F, Ollomo B, Prugnolle F, Anstey NM, Auburn S, Price RN, McCarthy JS, Kwiatkowski DP, Newbold CI, Berriman M, Otto TD. 2017. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature, 542, 101–104. [Google Scholar]
  50. Rutledge GG, Marr I, Huang GKL, Auburn S, Marfurt J, Sanders M, White NJ, Berriman M, Newbold CI, Anstey NM, Otto TD, Price RN. 2017. Genomic characterization of recrudescent Plasmodium malariae after treatment with artemether/lumefantrine. Emerging Infectious Diseases, 23, 1300–1307. [CrossRef] [PubMed] [Google Scholar]
  51. Saralamba N, Mayxay M, Newton PN, Smithuis F, Nosten F, Archasuksan L, Pukrittayakamee S, White NJ, Day NPJ, Dondorp AM, Imwong M. 2018. Genetic polymorphisms in the circumsporozoite protein of Plasmodium malariae show a geographical bias. Malaria Journal, 17(1), 269. [CrossRef] [PubMed] [Google Scholar]
  52. Schindel DE, Miller SE. 2005. DNA barcoding a useful tool for taxonomists. Nature, 435, 17. [Google Scholar]
  53. Schindler T, Robaina T, Sax J, Bieri JR, Mpina M, Gondwe L, Acuche L, Garcia G, Cortes C, Maas C, Daubenberger C. 2019. Molecular monitoring of the diversity of human pathogenic malaria species in blood donations on Bioko Island, Equatorial Guinea. Malaria Journal, 18(1), 9. [CrossRef] [PubMed] [Google Scholar]
  54. Selkoe KA, Toonen RJ. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 9, 615–629. [CrossRef] [PubMed] [Google Scholar]
  55. Sharma PC, Grover A, Kahl G. 2007. Mining microsatellites in eukaryotic genomes. Trends in Biotechnology, 25, 490–498. [CrossRef] [PubMed] [Google Scholar]
  56. Simbaqueba J, Sanchez P, Sanchez E, Nunez Zarantes VM, Chacon MI, Barrero LS, Marino-Ramirez L. 2011. Development and characterization of microsatellite markers for the Cape gooseberry Physalis peruviana. PloS One, 6, e26719. [CrossRef] [PubMed] [Google Scholar]
  57. Soontarawirat I, Andolina C, Paul R, Day NPJ, Nosten F, Woodrow CJ, Imwong M. 2017. Plasmodium vivax genetic diversity and heterozygosity in blood samples and resulting oocysts at the Thai-Myanmar border. Malaria Journal, 16(1), 355. [CrossRef] [PubMed] [Google Scholar]
  58. Szalkai B, Grolmusz V. 2018. SECLAF: a webserver and deep neural network design tool for hierarchical biological sequence classification. Bioinformatics, 34, 2487–2489. [CrossRef] [PubMed] [Google Scholar]
  59. Tan JC, Tan A, Checkley L, Honsa CM, Ferdig MT. 2010. Variable numbers of tandem repeats in Plasmodium falciparum genes. Journal of Molecular Evolution, 71, 268–278. [CrossRef] [PubMed] [Google Scholar]
  60. Toth G, Gaspari Z, Jurka J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 10, 967–981. [CrossRef] [PubMed] [Google Scholar]
  61. Trevino SG, Nkhoma SC, Nair S, Daniel BJ, Moncada K, Khoswe S, Banda RL, Nosten F, Cheeseman IH. 2017. High-resolution single-cell sequencing of malaria parasites. Genome Biology and Evolution, 9, 3373–3383. [CrossRef] [PubMed] [Google Scholar]
  62. Trimarsanto H, Benavente ED, Noviyanti R, Utami RA, Trianty L, Pava Z, Getachew S, Kim JY, Goo YK, Wangchuck S, Liu Y, Gao Q, Dowd S, Cheng Q, Clark TG, Price RN, Auburn S. 2017. VivaxGEN: an open access platform for comparative analysis of short tandem repeat genotyping data in Plasmodium vivax populations. PLoS Neglected Tropical Diseases, 11, e0005465. [CrossRef] [PubMed] [Google Scholar]
  63. Tripura R, Peto TJ, Chea N, Chan D, Mukaka M, Sirithiranont P, Dhorda M, Promnarate C, Imwong M, von Seidlein L, Duanguppama J, Patumrat K, Huy R, Grobusch MP, Day NPJ, White NJ, Dondorp AM. 2018. A controlled trial of mass drug administration to interrupt transmission of multidrug-resistant falciparum malaria in Cambodian villages. Clinical Infectious Diseases, 67(6), 817–826. [CrossRef] [Google Scholar]
  64. Vieira ML, Santini L, Diniz AL, Munhoz Cde F. 2016. Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology, 39, 312–328. [CrossRef] [PubMed] [Google Scholar]
  65. Weber JL, Wong C. 1993. Mutation of human short tandem repeats. Human Molecular Genetics, 2, 1123–1128. [CrossRef] [PubMed] [Google Scholar]
  66. WHO. 2016. Eliminating malaria in the Greater Mekong Subregion: united to end a deadly disease. p. 24. [Google Scholar]
  67. Yamamoto H, Imai K. 2015. Microsatellite instability: an update. Archives of Toxicology, 89(6), 899–921. [CrossRef] [PubMed] [Google Scholar]
  68. Yman V, Wandell G, Mutemi DD, Miglar A, Asghar M, Hammar U, Karlsson M, Lind I, Nordfjell C, Rooth I, Ngasala B, Homann MV, Farnert A. 2019. Persistent transmission of Plasmodium malariae and Plasmodium ovale species in an area of declining Plasmodium falciparum transmission in eastern Tanzania. PLoS Neglected Tropical Diseases, 13(5), e0007414. [CrossRef] [PubMed] [Google Scholar]
  69. Zhou M, Liu Q, Wongsrichanalai C, Suwonkerd W, Panart K, Prajakwong S, Pensiri A, Kimura M, Matsuoka H, Ferreira MU, Isomura S, Kawamoto F. 1998. High prevalence of Plasmodium malariae and Plasmodium ovale in malaria patients along the Thai-Myanmar border, as revealed by acridine orange staining and PCR-based diagnoses. Tropical Medicine & International Health, 3(4), 304–312. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.