Open Access
Volume 26, 2019
Article Number 57
Number of page(s) 12
Published online 19 September 2019
  1. Alphey L, Benedict M, Bellini R, Clark G, Dame D, Service M, Dobson S. 2010. Sterile-Insect methods for control of mosquito-borne diseases: an analysis. Vector-Borne and Zoonotic Diseases, 10, 295–311. [Google Scholar]
  2. Balestrino F, Benedict MQ, Gilles JR. 2012. A new larval tray and rack system for improved mosquito mass rearing. Journal of Medical Entomology, 49, 595–605. [CrossRef] [PubMed] [Google Scholar]
  3. Balestrino F, Gilles J, Soliban S, Nirschl A, Benedict Q, Benedict M. 2011. Mosquito mass-rearing technology: a cold-water vortex device for continuous unattended separation of Anopheles arabiensis pupae from larvae. Journal of American Mosquito Control Association, 27, 227–235. [CrossRef] [Google Scholar]
  4. Balestrino F, Puggioli A, Bellini R, Petric D, Gilles J. 2014. Mass production cage for Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 51, 155–163. [CrossRef] [PubMed] [Google Scholar]
  5. Barragan-Fonseca K, Dicke M, Van-Loon J. 2017. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed – a review. Journal of Insects as Food and Feed, 3, 105–120. [Google Scholar]
  6. Bellini R, Medici A, Puggioli A, Balestrino F, Carrieri M. 2013. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. Journal of Medical Entomology, 50, 317–325. [CrossRef] [PubMed] [Google Scholar]
  7. Benedict M, Robinson A. 2003. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends in Parasitology, 19, 349–355. [CrossRef] [PubMed] [Google Scholar]
  8. Bimbilé Somda NS, Dabiré K, Maiga H, Yamada H, Mamai W, Gnankiné O, Diabaté A, Sanon A, Bouyer J, Gilles J. 2017. Cost-effective larval diet mixtures for mass-rearing of Anopheles arabiensis Patton (Diptera: Culicidae). Parasites & Vectors, 10, 619. [CrossRef] [PubMed] [Google Scholar]
  9. Bimbilé Somda NS, Maïga H, Mamai W, Yamada H, Ali A, Konczal A, Gnankiné O, Diabaté A, Sanon A, Dabiré K, Gilles J, Bouyer J. 2019. Insects to feed insects. Feeding Aedes mosquitoes with flies for laboratory rearing. Scientific Reports, 9(1), 11403. [CrossRef] [PubMed] [Google Scholar]
  10. Bond JG, Ramírez-Osorio A, Marina CF, Fernández-Salas I, Liedo P, Dor A, Williams T. 2017. Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti . PLoS One, 12(11), e0187420. [CrossRef] [PubMed] [Google Scholar]
  11. Bourtzis K, Dobson S, Xi Z, Rasgon J, Calvitti M, Moreira L, Bossin H, Moretti R, Baton L, Hughes G, Mavingui P, Gilles J. 2014. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Tropica, 132, S150–S163. [CrossRef] [PubMed] [Google Scholar]
  12. Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, Mastellone V, Lombardi P, Attia Y, Nizza A. 2015. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. British Poultry Science, 56, 569–575. [PubMed] [Google Scholar]
  13. Briegel H. 1990. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. Journal of Medical Entomology, 27, 839–850. [CrossRef] [PubMed] [Google Scholar]
  14. Culbert N, Balestrino F, Dor A, Herranz G, Yamada H, Wallner T, Bouyer J. 2018. A rapid quality control test to foster the development of genetic control in mosquitoes. Scientific Reports, 8, 16179. [CrossRef] [PubMed] [Google Scholar]
  15. Dabbou S, Gai F, Biasato I, Capucchio M, Biasibetti E, Dezzutto D, Meneguz M, Plachà I, Gasco L, Schiavone A. 2018. Black soldier fly defatted meal as a dietary protein source for broiler chickens: effects on growth performance, blood traits, gut morphology and histological features. Journal of Animal Science and Biotechnology, 9, 49. [CrossRef] [PubMed] [Google Scholar]
  16. Dame D, Curtis C, Benedict M, Robinson A, Knols B. 2009. Historical applications of induced sterilisation in field populations of mosquitoes. Malaria Journal, 8, S2. [Google Scholar]
  17. Damiens D, Benedict M, Wille M, Gilles J. 2012. An inexpensive and effective larval diet for Anopheles arabiensis (Diptera: Culicidae): eat like a horse, a bird or a fish? Journal of Medical Entomology, 49, 1001–1011. [CrossRef] [PubMed] [Google Scholar]
  18. FAO/IAEA. 2019. Guidelines for mass rearing of Aedes mosquitoes. Version 1.0. [Google Scholar]
  19. Fay R, Morlan H. 1959. A mechanical device for separating the developmental stages, sexes and species of mosquitoes. Mosquito News, 19, 144–147. [Google Scholar]
  20. Focks D. 1980. An improved separator for the developmental stages, sexes, and species of mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 17, 567–568. [CrossRef] [PubMed] [Google Scholar]
  21. Gilles JRL, Schetelig MF, Scolari F, Marec F, Capurro ML, Franz G, Bourtzis K. 2014. Towards mosquito sterile insect technique programmes: exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes. Acta Tropica, 132S, S178–S187. [Google Scholar]
  22. Gingrich R, Graham A, Hightower B. 1971. Media containing liquefied nutrients for mass-rearing larvae of the screw-worm. Journal of Economical Entomology, 64, 678–683. [CrossRef] [Google Scholar]
  23. Gonzales K, Hansen I. 2016. Artificial diets for mosquitoes. International Journal of Environmental Research and Public Health, 13, 1267. [Google Scholar]
  24. Gunathilaka P, Uduwawala U, Udayanga N, Ranathunge R, Amarasinghe L, Abeyewickreme W. 2018. Determination of the efficiency of diets for larval development in mass-rearing Aedes aegypti (Diptera: Culicidae). Bulletin of Entomological Research, 108, 583–592. [CrossRef] [PubMed] [Google Scholar]
  25. Iyaloo D, Facknath S. 2017. Optimization of Aedes albopictus rearing procedures: preliminary steps towards large-scale rearing of the species within the laboratory in Mauritius. Journal of Entomology and Zoology Studies, 5, 46–53. [Google Scholar]
  26. Khan I, Farid A, Zeb A. 2013. Development of inexpensive and globally available larval diet for rearing Anopheles stephensi (Diptera: Culicidae) mosquitoes. Parasites & Vectors, 6, 90. [CrossRef] [PubMed] [Google Scholar]
  27. Laird N, Ware J. 1982. Random-effects models for longitudinal data. Biometrics, 38, 963–974. [Google Scholar]
  28. Lees R, Gilles J, Hendrichs J, Vreysen M, Bourtzis K. 2015. Back to the future: the sterile insect technique against mosquito disease vectors. Current Opinion in Insect Science, 10, 156–162. [CrossRef] [PubMed] [Google Scholar]
  29. Lefèvre T, Gouagna LC, Dabiré KR, Elguero E, Fontenille D, Renaud F, Costantini C, Thomas F. 2009. Beyond nature and nurture: phenotypic plasticity in blood-feeding behavior of Anopheles gambiae s.s. when humans are not readily accessible. American Journal of Tropical Medicine and Hygiene, 81, 1023–1029. [CrossRef] [Google Scholar]
  30. Lyimo E, Koella J. 1992. Relationship between body size of adult Anopheles gambiae s.l. and infection with the malaria parasite Plasmodium falciparum . Parasitology, 104, 233–237. [CrossRef] [PubMed] [Google Scholar]
  31. Maiga H, Bimbile Somda NS, Yamada H, Wood O, Damiens D, Mamai W, Balestrino F, Lees R, Dabire R, Diabate A, Gilles J. 2017. Enhancements to the mass-rearing cage for the malaria vector, Anopheles arabiensis for improved adult longevity and egg production. Entomologia Experimentalis et Applicata, 164, 269–275. [Google Scholar]
  32. Maïga H, Mamai W, Bimbile Somda NS, Konczal A, Wallner T, Herranz G, Herrero R, Yamada H, Bouyer J. 2019. Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus). PLoS Neglected Tropical Diseases. (In press). [Google Scholar]
  33. Makkar H, Tran G, Heuzé V, Ankers P. 2014. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1–33. [Google Scholar]
  34. Mamai W, Bimbilé Somda NS, Maiga H, Juarez J, Zinab A, Ali A, Less R, Gilles J. 2017. Optimization of mosquito egg production under mass rearing setting: effects of cage volume, blood meal source and adult population density for the malaria vector Anopheles arabiensis. Malaria Journal, 16, 41. [CrossRef] [PubMed] [Google Scholar]
  35. Mamai W, Lobb L, Bimbilé Somda NS, Maiga H, Yamada H, Lees R, Bouyer J, Gilles J. 2018. Optimization of mass-rearing methods for Anopheles arabiensis larval stages: effects of rearing water temperature and larval density on mosquito life-history traits. Journal of Economic Entomology, 111, 2383–2390. [CrossRef] [PubMed] [Google Scholar]
  36. Mamai W, Maiga H, Gárdos M, Bán P, Bimbile Somda NS, Konczal A, Wallner T, Parker A, Balestrino F, Yamada H, Gilles J, Bouyer J. 2019. The efficiency of a new automated mosquito larval counter and its impact on larval survival. Scientific Reports, 9(1), 7413. [CrossRef] [PubMed] [Google Scholar]
  37. MR4 Staff. 2007. Separating larvae and pupae, in Methods in Anopheles research, 1st edn. Centers for Disease Control and Prevention: Atlanta, GA. [Google Scholar]
  38. Naksathit AT, Scott TW. 1998. Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar. Journal of the American Mosquito Control Association, 14, 148–152. [PubMed] [Google Scholar]
  39. Newton G, Booram C, Barker R, Hale O. 1977. Dried Hermetia illucens larvae meal as supplement for swine. Journal of Animal Science and Biotechnology, 44, 395–400. [Google Scholar]
  40. Pleydell D, Bouyer J. 2019. Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics. Communications Biology, 2, 201. [CrossRef] [PubMed] [Google Scholar]
  41. Puggioli A, Balestrino F, Damiens D, Lees R, Soliban S, Madakacherry O, Dindo M, Bellini R, Gilles J. 2013. Efficiency of three diets for larval development in mass-rearing Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 50, 819–825. [CrossRef] [PubMed] [Google Scholar]
  42. Puggioli A, Carrieri M, Dindo M, Medici A, Lees R, Gilles J, Bellini R. 2017. Development of Aedes albopictus (Diptera: Culicidae) larvae under different laboratory conditions. Journal of Medical Entomology, 54, 142–149. [CrossRef] [PubMed] [Google Scholar]
  43. Stadtlander T, Stamer A, Buser A, Wohlfahrt J, Leiber F, Sandrock C. 2017. Hermetia illucens meal as fish meal replacement for rainbow trout on farm. Journal of Insects as Food and Feed, 3, 165–175. [CrossRef] [Google Scholar]
  44. Takken W, Klowden M, Chambers G. 1998. Effect of body size on host seeking and blood meal utilization in Anopheles gambiae sensu stricto (Diptera: Culicidae): the disadvantage of being small. Journal of Medical Entomology, 35, 639–645. [CrossRef] [PubMed] [Google Scholar]
  45. Telang A, Li Y, Noriega F, Brown M. 2006. Effects of larval nutrition on the endocrinology of mosquito egg development. Journl of Experimental Biology, 209, 645–655. [CrossRef] [Google Scholar]
  46. Van-Huis A, Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. 2013. Edible insects: future prospects for food and feed security. FAO forestry paper. Rome, Italy: FAO. p. 171. [Google Scholar]
  47. Zhang D, Zhang M, Wu Y, Gilles J, Yamada H, Wu Z, Xi Z, Zheng X. 2017. Establishment of a medium-scale mosquito facility: optimization of the larval mass-rearing unit for Aedes albopictus (Diptera: Culicidae). Parasites & Vectors, 10, 569. [CrossRef] [PubMed] [Google Scholar]
  48. Zheng M, Zhang D, Damiens D, Lees R, Gilles J. 2015. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) – II – Egg storage and hatching. Parasites & Vectors, 8, 348. [CrossRef] [PubMed] [Google Scholar]
  49. Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, Yan Z, Hu L, Sun Q, Liang Y, Zhuang J, Wang X, Wie Y, Zhu J, Qian W, Parker A, Gilles J, Bourtzis K, Bouyer J, Tang M, Liu J, Hu Z, Gong J, Ho Zhang Z, Lin L, Liu Q, Hu Z, Wu Z, Baton L, Hoffmann A, Xi Z. 2019. Incompatible and sterile insect techniques combined to eliminate mosquitoes. Nature, 572, 56–61. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.