Open Access
Volume 26, 2019
Article Number 69
Number of page(s) 23
Published online 29 November 2019
  1. Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Moldy RS. 2016. P4-ATPases as phospholipid flippases – structure, function, and enigmas. Frontiers in Physiology, 7, 275. [CrossRef] [PubMed] [Google Scholar]
  2. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM. 2008. Metal ions in biological catalysis: from enzyme databases to general principles. Journal of Biological Inorganic Chemistry, 13, 1205–1208. [CrossRef] [Google Scholar]
  3. Argüello JM. 2003. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. Journal of Membrane Biology, 195, 93–108. [CrossRef] [Google Scholar]
  4. Argüello JM, Eren E, González-Guerrero M. 2007. The structure and function of heavy metal transport P1B-ATPases. Biometals, 20, 233–248. [PubMed] [Google Scholar]
  5. Armitage EG, Alqaisi AQI, Godzien J, Peña I, Mbekeani AJ, Alonso-Herranz V, López-Gonzálvez A, Martín J, Gabarro R, Denny PW, Barrett MP, Barbas C. 2018. Complex interplay between sphingolipid and sterol metabolism revealed by perturbations to the Leishmania metabolome caused by miltefosine. Antimicrobial Agents and Chemotherapy, 62, e02095–17. [CrossRef] [PubMed] [Google Scholar]
  6. Arruda-Costa N, Escrivani D, de Almeida-Amaral EE, Meyer-Fernandes JR, Rossi-Bergmann B. 2017. Anti-parasitic effect of the diuretic and Na+-ATPase inhibitor furosemide in cutaneous leishmaniasis. Parasitology, 144, 1375–1383. [CrossRef] [PubMed] [Google Scholar]
  7. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ Jr, Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H. 2010. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 38(Database issue), D457–D462. [CrossRef] [PubMed] [Google Scholar]
  8. Axelsen KB, Palmgren PG. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. Journal of Molecular Evolution, 46, 84–101. [CrossRef] [PubMed] [Google Scholar]
  9. Balanco JMF, Moreira MEC, Bonom A, Bozza PT, Amarante-Mendes G, Pirmez C, Barcinski MA. 2001. Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Current Biology, 11, 1870–1873. [CrossRef] [Google Scholar]
  10. Bao Y, Weiss LM, Hashimoto M, Nara T, Huang H. 2009. Short report: a regulatory subunit interacts with P-type ATPases in Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene, 80, 941–943. [CrossRef] [Google Scholar]
  11. Becker S, Schneider H, Schiener-Bobis G. 2004. The highly conserved extracellular peptide, DYSG (893–896), is a critical structure for sodium pump function. European Journal of Biochemistry, 271, 3821–3831. [CrossRef] [PubMed] [Google Scholar]
  12. Benaim G, Losada S, Gadelha FR, Docampo R. 1991. A calmodulin activated Ca2+-Mg2+-ATPase is involved in Ca2+ transport by plasma membrane vesicles from Trypanosoma cruzi. Biochemical Journal, 280, 715–720. [CrossRef] [Google Scholar]
  13. Benaim G, Lopez-Estraño C, Docampo R, Moreno SNJ. 1993. A calmodulin-stimulated Ca2+ pump in plasma membrane vesicles from Trypanosoma brucei. Selective inhibition by pentamidine. Biochemical Journal, 296, 759–763. [CrossRef] [Google Scholar]
  14. Benaim G, Cervino V, Hermoso T, Felibert P, Laurentin A. 1993. Intracellular calcium homeostasis in Leishmania mexicana. Identification and characterization of a plasma membrane calmodulin-dependent Ca2+-ATPase. Biological Research, 26, 141–150. [PubMed] [Google Scholar]
  15. Benaim G, Garcia CRS. 2011. Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis – a review. Tropical Biomedicine, 28, 471–481. [PubMed] [Google Scholar]
  16. Benito B, Garciadeblás B, Schreier P, Rodríguez-Navarro A. 2002. Novel p-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryotic Cell, 3, 359–368. [Google Scholar]
  17. Bern C, Montgomery SP. 2009. An estimate of the burden of Chagas disease in the United States. Clinical Infectious Diseases, 49, e52–e54. [CrossRef] [Google Scholar]
  18. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM. 2005. The genome of the African trypanosome Trypanosoma brucei. Science, 309, 416–422. [Google Scholar]
  19. Bonza MC, Luoni L. 2010. Plant and animal type 2B Ca2+-ATPases: evidence for a common auto-inhibitory mechanism. FEBS Letters, 584, 4783–4788. [CrossRef] [PubMed] [Google Scholar]
  20. Bowles DJ, Voorheis HP. 1982. Release of the surface coat from the plasma membrane of intact bloodstream forms of Trypanosoma brucei requires Ca2+. FEBS Letters, 139, 17–21. [CrossRef] [PubMed] [Google Scholar]
  21. Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. 2012. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Human Molecular Genetics, 21, 2646–2650. [CrossRef] [PubMed] [Google Scholar]
  22. Britto C, Ravel C, Bastien P, Blaineau C, Pagés M, Dedet J, Wincker P. 1998. Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene, 222, 107–117. [Google Scholar]
  23. Bublitz M, Poulsen H, Morth JP, Nissen P. 2010. In and out of the cation pumps: P-type ATPase structure revisited. Current Opinion in Structural Biology, 20, 431–439. [CrossRef] [PubMed] [Google Scholar]
  24. Büscher P, Cecchi G, Jamonneau V, Priotto G. 2017. Human African trypanosomiasis. Lancet, 390, 2397–2409. [CrossRef] [PubMed] [Google Scholar]
  25. Caruso-Neves C, Einicker-Lamas M, Chagas C, Oliveira MM, Vieyra A, Lopes AG. 1998. Trypanosoma cruzi epimastigotes express the ouabain- and vanadate-sensitive (Na(+)+K+)-ATPase activity. Zeitschrift für Naturforschung C – Journal of Biosciences, 53, 1049–1054. [CrossRef] [Google Scholar]
  26. Caruso-Neves C, Einicker-Lamas M, Chagas C, Oliveira MM, Vieyra A, Lopes AG. 1999. Ouabain-insensitive Na(+)-ATPase activity in Trypanosoma cruzi epimastigotes. Zeitschrift für Naturforschung C – Journal of Biosciences, 54, 100–104. [CrossRef] [Google Scholar]
  27. Chan H, Babayan V, Blyumin E, Gandhi C, Hak K, Harake D, Kumar K, Lee P, Li TT, Liu HY, Lo TCT, Meyer CJ, Stanford S, Zamora KS, Saier MH Jr. 2010. The P-type ATPase superfamily. Journal of Molecular Microbiology and Biotechnology, 19, 5–104. [CrossRef] [PubMed] [Google Scholar]
  28. Cohen Y, Megyeri M, Chen OC, Condomitti G, Riezman I, Loizides-Mangold U, Abdul-Sada A, Rimon N, Riezman H, Platt FM, Futerman AH, Schuldiner M. 2013. The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum. PLoS One, 8, e85519. [CrossRef] [PubMed] [Google Scholar]
  29. Colona TE, Huynh L, Fambrough DM. 1997. Subunit interactions in the Na, K-ATPase explored with the yeast two hybrid system. Journal of Biological Chemistry, 272, 12366–12372. [CrossRef] [Google Scholar]
  30. Cortez M, Neira I, Ferreira DA, Luquetti O, Rassi A, Atayde VD, Yoshida N. 2003. Infection by Trypanosoma cruzi metacyclic forms deficient in gp82 but expressing a related surface molecule, gp30. Infection and Immunity, 71, 6184–6191. [CrossRef] [PubMed] [Google Scholar]
  31. Croft SL, Snowdon D, Yardley V. 1996. The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Journal of Antimicrobial Chemotherapy, 38, 1041–1047. [CrossRef] [Google Scholar]
  32. Cronin SR, Khoury A, Ferry DK, Hampton RY. 2000. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. Journal of Cell Biology, 148, 915–924. [CrossRef] [Google Scholar]
  33. Cronin SR, Rao R, Hampton RY. 2002. Cod1p/spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. Journal of Cell Biology, 157, 1017–1028. [CrossRef] [Google Scholar]
  34. Daleke DL. 2007. Phospholipid flippases. Journal of Biological Chemistry, 282, 821–825. [CrossRef] [Google Scholar]
  35. de Almeida-Amaral EE, Caruso-Neves C, Lara LS, Pinheiro CM, Meyer-Fernandes JR. 2007. Leishmania mexicana: PKC-like protein kinase modulates the (Na+ + K+) ATPase activity. Experimental Parasitology, 116, 419–426. [CrossRef] [PubMed] [Google Scholar]
  36. de Almeida-Amaral EE, Caruso-Neves C, Pires VMP, Meyer-Fernandes JR. 2008. Leishmania amazonensis: characterization of ouabain insensitive Na+-ATPase activity. Experimental Parasitology, 118, 165–171. [CrossRef] [PubMed] [Google Scholar]
  37. de Almeida-Amaral EE, Cardoso VC, Francioli FG, Meyer-Fernandes JR. 2010. Leishmania amazonensis: heme stimulates (Na+ + K+) ATPase activity via phosphatidylinositol-specific phospholipase C/protein kinase C-like PI-PLC/PKC signaling pathways. Experimental Parasitology, 124, 436–441. [CrossRef] [PubMed] [Google Scholar]
  38. Dehay B, Martinez-Vicente M, Ramirez A, Perier C, Klein C, Vila M, Bezard E. 2012. Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Autophagy, 8, 1389–1391. [CrossRef] [PubMed] [Google Scholar]
  39. Dey R, Datta SC. 1994. Leishmanial glycosomes contain superoxide dismutase. Biochemical Journal, 301, 317–319. [CrossRef] [Google Scholar]
  40. Docampo R, Moreno SN, Vercesi AE. 1993. Effect of thapsigargin on calcium homeostasis in Trypanosoma cruzi trypomastigotes and epimastigotes. Molecular and Biochemical Parasitology, 59, 305–313. [CrossRef] [PubMed] [Google Scholar]
  41. Docampo R, Moreno SNJ. 2011. Acidocalcisomes. Cell Calcium, 50, 113–119. [CrossRef] [PubMed] [Google Scholar]
  42. Docampo R, Huang G. 2015. Calcium signaling in trypanosomatid parasites. Cell Calcium, 57, 194–202. [CrossRef] [PubMed] [Google Scholar]
  43. Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, Hilley JD, de Doncker S, Maes I, Mottram JC, Quail MA, Rijal S, Sanders M, Schönian G, Stark O, Sundar S, Vanaerschot M, Hertz-Fowler C, Dujardin JC, Berriman M. 2011. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research, 21, 2143–2156. [CrossRef] [PubMed] [Google Scholar]
  44. Ekberg K, Palmgren MG, Veierskov B, Buch-Pederson MJ. 2010. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein. Journal of Biological Chemistry, 85, 7344–7350. [CrossRef] [Google Scholar]
  45. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B. 2005. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science, 309, 409–415. [Google Scholar]
  46. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N. 2005. Comparative genomics of Trypanosomatid parasitic protozoa. Science, 309, 404–409. [Google Scholar]
  47. Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D, Holemans T, Andreeva A, Reichbauer J, De Rycke R, Chang D, van Veen S, Samuel J, Schöls L, Pöppel T, Mollerup Sørensen D, Asselbergh B, Klein C, Zuchner S, Jordanova A, Vangheluwe P, Tournev I, Schüle R. 2017. Loss of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain, 140, 287–305. [CrossRef] [PubMed] [Google Scholar]
  48. Facanha AL, Appelgren H, Tabish M, Okorokov L, Ekwall K. 2002. The endoplasmic reticulum cation P-type ATPase Cta4p is required for control of cell shape and microtubule dynamics. Journal of Cell Biology, 157, 1029–1039. [CrossRef] [Google Scholar]
  49. Felibertt P, Bermudez R, Cervino V, Dawidowicz K, Dagger F, Proverbio T, Marin R, Benaim G. 1995. Ouabain-sensitive Na+, K+-ATPase in the plasma membrane of Leishmania mexicana. Molecular and Biochemical Parasitology, 74, 179–187. [CrossRef] [PubMed] [Google Scholar]
  50. Felsenstein J. 1989. PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics, 5, 164–166. [Google Scholar]
  51. Felsenstein J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington. [Google Scholar]
  52. Fiebig M, Kelly S, Gluenz E. 2015. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathogens, 11, e1005186. [CrossRef] [PubMed] [Google Scholar]
  53. Fu Y, Chang F-MJ, Giedroc DP. 2014. Copper transport and trafficking at the host-bacterial pathogen interface. Accounts of Chemical Research, 47, 3605–3613. [CrossRef] [PubMed] [Google Scholar]
  54. Furune T, Hashimoto K, Ishiguro J. 2008. Characterization of a fission yeast P5-type ATPase homologue that is essential for Ca2+/Mn2+ homeostasis in the absence of P2-type ATPases. Genes and Genetic Systems, 83, 373–381. [CrossRef] [Google Scholar]
  55. Furuya T, Okura M, Ruiz FA, Scout DA, Docampo R. 2001. TcSCA complements yeast mutants defective in Ca2+ pumps and encodes a Ca2+-ATPase that localizes to the endoplasmic reticulum of Trypanosoma cruzi. Journal of Biological Chemistry, 276, 32437–32445. [CrossRef] [Google Scholar]
  56. Gantzel RH, Mogensen LS, Mikkelsen SA, Vilsen B, Molday RS, Vestergaard AL, Andersen JP. 2017. Disease mutations reveal residues critical to the interaction of P4-ATPases with lipid substrates. Scientific Reports, 7, 10418. [CrossRef] [PubMed] [Google Scholar]
  57. Gascon J, Bern C, Pinazo MJ. 2010. Chagas disease in Spain, the United States and other non-endemic countries. Acta Tropica, 115, 22–27. [CrossRef] [PubMed] [Google Scholar]
  58. Glaser TA, Baatz JE, Kreishman CP, Mukkada AJ. 1988. pH homeostasis in Leishmania donovani amastigotes and promastigotes. Proceedings of the National Academy of Sciences of the United States of America, 85, 7602–7606. [CrossRef] [PubMed] [Google Scholar]
  59. Glaser TA, Utz GL, Mukkada AJ. 1992. The plasma membrane electrical gradient membrane potential in Leishmania donovani promastigotes and amastigotes. Molecular and Biochemical Parasitology, 51, 9–16. [CrossRef] [PubMed] [Google Scholar]
  60. Glaser TA, Mukkada AJ. 1992. Proline transport in Leishmania donovani amastigotes: dependence on pH gradients and membrane potential. Molecular and Biochemical Parasitology, 51, 1–8. [CrossRef] [PubMed] [Google Scholar]
  61. Grigore D, Meade JC. 2006. A COOH-terminal domain regulates the activity of Leishmania proton pumps LDH1A and 1B. International Journal for Parasitology, 36, 381–393. [CrossRef] [PubMed] [Google Scholar]
  62. Harrison MD, Jones CE, Dameron CT. 1999. Copper chaperones: function, structure and copper binding properties. Journal of Biological Inorganic Chemistry, 4, 145–153. [CrossRef] [Google Scholar]
  63. Haruta M, Gray WM, Sussman MR. 2015. Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Current Opinion in Plant Biology, 28, 68–75. [CrossRef] [PubMed] [Google Scholar]
  64. Heinick A, Urban K, Roth S, Spies D, Nunes F, Phansteil O, Liebau E, Lüersen K. 2009. Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB Journal, 24, 1–12. [Google Scholar]
  65. Hodgkinson V, Petris MJ. 2012. Copper homeostasis at the host-pathogen interface. Journal of Biological Chemistry, 287, 13549–13555. [CrossRef] [Google Scholar]
  66. Iizumi K, Mikami Y, Hashimoto M, Nara T, Hara Y, Aoki T. 2006. Molecular cloning and characterization of ouabain-insensitive Na+-ATPase in the parasitic protist, Trypanosoma cruzi. Biochimica et Biophysica Acta, 1758, 738–746. [CrossRef] [PubMed] [Google Scholar]
  67. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Muller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O’neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schafer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ. 2005. The genome of the kinetoplastid parasite, Leishmania major. Science, 309, 436–442. [Google Scholar]
  68. Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA, Quail MA, Chukualim B, Capewell P, MacLeod A, Melville SE, Gibson W, Barry JD, Berriman M, Hertz-Fowler C. 2010. The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Neglected Tropical Diseases, 4, e658. [Google Scholar]
  69. Jakobsen MK, Poulsen LR, Schulz A, Fleurat-Lessard P, Møller A, Husted S, Schiøtt M, Amtmann A, Palmgren MG. 2005. Pollen development and fertilization in Arabidopsis is dependent on the male gametogenesis impaired anthers gene encoding a type V P-type ATPase. Genes & Development, 19, 2757–2769. [CrossRef] [PubMed] [Google Scholar]
  70. Jensen BC, Sivam D, Kifer CT, Myler PJ, Parsons M. 2009. Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics, 10, 482. [CrossRef] [PubMed] [Google Scholar]
  71. Jensen MS, Costa SR, Duelli AS, Andersen PA, Poulsen LR, Stanchev LD, Gourdon P, Palmgren M, Pomorski TG, López-Marqués RL. 2017. Phospholipid flipping involves a central cavity in P4 ATPases. Scientific Reports, 7, 17621. [CrossRef] [PubMed] [Google Scholar]
  72. Jiang S, Anderson SA, Winget GD, Mukkada AJ. 1994. Plasma membrane K+/H+-ATPase from Leishmania donovani. Journal of Cell Physiology, 159, 60–66. [CrossRef] [Google Scholar]
  73. Jiang S, Meadows J, Anderson SA, Mukkada AJ. 2002. Antileishmanial activity of the antiulcer agent omeprazole. Antimicrobial Agents and Chemotherapy, 46, 2569–2574. [CrossRef] [PubMed] [Google Scholar]
  74. Johnson MDL, Kehl-Fie TE, Klein R, Kelly J, Burnham C, Mann B, Rosch JW. 2015. Role of copper efflux in pneumococcal pathogenesis and resistance to macrophage mediated immune clearance. Infection and Immunity, 83, 1684–1694. [CrossRef] [PubMed] [Google Scholar]
  75. Kabani S, Fenn K, Ross A, Ivens A, Smith TK, Ghazal P, Matthews K. 2009. Genome wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics, 10, 427. [CrossRef] [PubMed] [Google Scholar]
  76. Kollien AH, Grospietsch T, Kleffmann T, Zerbst-Boroffka I, Schaub GA. 2001. Ionic composition of the rectal contents and excreta of the reduviid bug Triatoma infestans. Journal of Insect Physiology, 47, 739–747. [CrossRef] [PubMed] [Google Scholar]
  77. Kubak BM, Yotis WW. 1981. Staphylococcus aureus adenosine triphosphatase: inhibitor sensitivity and release from membrane. Journal of Bacteriology, 146, 385–390. [PubMed] [Google Scholar]
  78. Ladomersky E, Khan A, Shanbhag V, Cavet JS, Chan J, Weisman GA, Petris MJ. 2017. Host and pathogen copper-transporting P-type ATPases function antagonistically during Salmonella infection. Infection and Immunity, 85, e00351–17. [CrossRef] [PubMed] [Google Scholar]
  79. Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D, Myler PJ. 2011. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB Journal, 25, 515–525. [CrossRef] [Google Scholar]
  80. Lecchi S, Nelson CJ, Allen KE, Swaney DL, Thompson KL, Coon JJ, Sussman MR, Slayman CW. 2007. Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. Journal of Biological Chemistry, 282, 35471–35481. [CrossRef] [Google Scholar]
  81. Lelong E, Marchetti A, Guého A, Lima WC, Sattler N, Molmeret M, Hagedorn M, Soldati T, Cosson P. 2011. Role of magnesium and a phagosomal P-type ATPase in intracellular bacterial killing. Cellular Microbiology, 13, 246–258. [CrossRef] [PubMed] [Google Scholar]
  82. Lenoir G, Williamson P, Holthuis JC. 2007. On the origin of lipid asymmetry: the flip side of ion transport. Current Opinion in Chemical Biology, 11, 654–661. [CrossRef] [PubMed] [Google Scholar]
  83. Li Z, Xie Z. 2009. The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Archiv – European Journal of Physiology, 457, 635. [CrossRef] [Google Scholar]
  84. Lindoso JAL, Cunha MA, Queiroz IT, Moreira CHV. 2016. Leishmaniasis-HIV coinfection: current challenges, HIV/AIDS (Auckland), 8, 147–156. [Google Scholar]
  85. Liveanu V, Webster P, Zilberstein D. 1991. Localization of the plasma membrane and mitochondrial H+-ATPases in Leishmania donovani promastigotes. European Journal of Cell Biology, 54, 95–101. [PubMed] [Google Scholar]
  86. Llanes A, Restrepo CM, Del Vecchio G, Anguizola FJ, Lleonart R. 2015. The genome of Leishmania panamensis: insights into genomics of the L. Viannia subgenus. Scientific Reports, 5, 8550. [CrossRef] [PubMed] [Google Scholar]
  87. Lu HG, Zhong L, Chang KP, Docampo R. 1997. Intracellular Ca2+ pool content and signaling and expression of a calcium pump linked to virulence in Leishmania mexicana amazonensis amastigotes. Journal of Biological Chemistry, 272, 9464–9473. [CrossRef] [Google Scholar]
  88. Lu HG, Zhong L, de Souza W, Benchimol M, Moreno S, Docampo R. 1998. Ca2+ content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Molecular and Cellular Biology, 18, 2309–2323. [Google Scholar]
  89. Luo S, Scout DA, Docampo R. 2002. Trypanosoma cruzi H+-ATPase 1 (TcHA1) and 2 (TcHA2) genes complement yeast mutants defective in H+ pumps and encode plasma membrane P-type H+-ATPases with different enzymatic properties. Journal of Biological Chemistry, 277, 44497–44506. [CrossRef] [Google Scholar]
  90. Luo S, Rohloff P, Cox J, Uyemura SA, Docampo R. 2004. Trypanosoma brucei plasma membrane-type Ca2+-ATPase 1 (TbPMC1) and 2 (TbPMC2) genes encode functional Ca2+-ATPases localized to the acidocalcisomes and plasma membrane, and essential for Ca2+ homeostasis and growth. Journal of Biological Chemistry, 279, 14427–14439. [CrossRef] [Google Scholar]
  91. Luo S, Fang J, Docampo R. 2006. Molecular characterization of Trypanosoma brucei P-type ATPases. Journal of Biological Chemistry, 281, 21963–21973. [CrossRef] [Google Scholar]
  92. Lutsenko S, LeShane ES, Shinde U. 2007. Biochemical basis of regulation of human copper-transporting ATPases. Archives of Biochemistry and Biophysics, 463, 134–148. [CrossRef] [PubMed] [Google Scholar]
  93. MacFarlane GD, Sampson DE, Clawson DJ, Clawson CC, Kelly KL, Herzberg MC. 1994. Evidence for an ecto-ATPase on the cell wall of Streptococcus sanguis. Oral Microbiology and Immunology, 9, 180–185. [CrossRef] [PubMed] [Google Scholar]
  94. Machado CA, Ayala FJ. 2001. Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proceedings of the National Academy of Sciences of the United States of America, 98, 7396–7401. [CrossRef] [PubMed] [Google Scholar]
  95. Mancini PE, Strickler JE, Patton CL. 1982. Identification and partial characterization of plasma membrane polypeptides of Trypanosoma brucei. Biochimica et Biophysica Acta, 688, 399–410. [CrossRef] [PubMed] [Google Scholar]
  96. Mandal D, Mukherjee T, Sarkar S, Majumdar S, Bhaduri A. 1997. The plasma membrane Ca2+-ATPase of Leishmania donovani is an extrusion pump for Ca2+. Biochemical Journal, 322, 251–257. [CrossRef] [Google Scholar]
  97. Marchesini N, Docampo R. 2002. A plasma membrane P-type H+-ATPase regulates intracellular pH in Leishmania mexicana amazonensis. Molecular and Biochemical Parasitology, 119, 225–236. [CrossRef] [PubMed] [Google Scholar]
  98. Meade JC, Shaw J, Lemaster S, Gallagher G, Stringer JR. 1987. Structure and expression of a tandem gene pair in Leishmania donovani that encodes a protein structurally homologous to eukaryotic cation-transporting ATPases. Molecular and Cellular Biology, 7, 3937–3946. [CrossRef] [PubMed] [Google Scholar]
  99. Meade JC, Hudson KM, Stringer SL, Stringer JR. 1989. A tandem pair of Leishmania donovani cation transporting ATPase genes encode isoforms that are differentially expressed. Molecular and Biochemical Parasitology, 33, 81–92. [CrossRef] [PubMed] [Google Scholar]
  100. Meade JC, Coombs GH, Mottram JC, Steele PE, Stringer JR. 1991. Conservation of cation-transporting ATPase genes in Leishmania. Molecular and Biochemical Parasitology, 45, 29–38. [CrossRef] [PubMed] [Google Scholar]
  101. Meade JC, Li C, Stiles JK, Moate ME, Penny J, Krishna S, Finley RW. 2000. The Trypanosoma cruzi genome contains ion motive ATPase genes which closely resemble Leishmania proton pumps. Parasitology International, 49, 309–320. [CrossRef] [PubMed] [Google Scholar]
  102. Mendoza M, Mijares A, Rojas H, Colina C, Cervino V, DiPolo R, Benaim G. 2004. Evaluation of the presence of a thapsigargin-sensitive calcium store in trypanosomatids using Trypanosoma evansi as a model. Journal of Parasitology, 90, 1181–1183. [CrossRef] [Google Scholar]
  103. Minning TA, Weatherly DB, Atwood J 3rd, Orlando R, Tarleton RL. 2009. The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics, 10, 370. [CrossRef] [PubMed] [Google Scholar]
  104. Mishina YV, Krishna S, Haynes RK, Meade JC. 2007. Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrobial Agents and Chemotherapy, 51, 852–854. [CrossRef] [PubMed] [Google Scholar]
  105. Møller AB, Asp T, Holm PB, Palmgren MG. 2008. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Molecular Phylogenetics and Evolution, 46, 619–634. [CrossRef] [PubMed] [Google Scholar]
  106. Møller JV, Juul B, leMarie M. 1996. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochimica et Biophysica Acta, 1286, 1–51. [CrossRef] [PubMed] [Google Scholar]
  107. Moreno SNJ, Silva J, Vercesi AE, Docampo R. 1994. Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. Journal of Experimental Medicine, 180, 1535–1540. [CrossRef] [Google Scholar]
  108. Morsomme P, Slayman CW, Goffeau A. 2000. Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-ATPase. Biochimica et Biophysica Acta, 1469, 133–157. [CrossRef] [PubMed] [Google Scholar]
  109. Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P. 2011. A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase pumps. Nature Reviews, 12, 60–70. [CrossRef] [Google Scholar]
  110. Mruk K, Farley BM, Ritacco AW, Kobertz WR. 2014. Calmodulation meta-analysis: predicting calmodulin binding via canonical motif clustering. Journal of General Physiology, 144, 105–114. [CrossRef] [Google Scholar]
  111. Mukherjee T, Mandal D, Bhaduri A. 2001. Leishmania plasma membrane Mg2+-ATPase is a H+/K+-antiporter involved in glucose symport. Journal of Biological Chemistry, 276, 5563–5569. [CrossRef] [Google Scholar]
  112. Mukkada AJ, Meade JC, Glaser TA, Bonventre PF. 1985. Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science, 229, 1099–1101. [Google Scholar]
  113. Niggli V, Sigel E. 2007. Anticipating antiport in P-type ATPases. Trends in Biochemical Sciences, 33, 156–160. [Google Scholar]
  114. Nolan DP, Reverlard P, Pays E. 1994. Overexpression and characterization of a gene for a Ca2+-ATPase of the endoplasmic reticulum in Trypanosoma brucei. Journal of Biological Chemistry, 269, 26045–26051. [Google Scholar]
  115. Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, Inesi G, Toyoshima C. 2005. Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proceedings of the National Academy of Sciences of the United States of America, 102, 14489–14496. [CrossRef] [PubMed] [Google Scholar]
  116. Ogawa H, Toyoshima C. 2002. Homology modeling of the cation binding sites of Na+K+-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 99, 15977–15982. [CrossRef] [PubMed] [Google Scholar]
  117. Palmeri A, Gherardini PF, Tsigankov P, Ausiello G, Späth GF, Zilberstein D, Helmer-Citterich M. 2011. PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family Trypanosomatidae. BMC Genomics, 12, 614. [CrossRef] [PubMed] [Google Scholar]
  118. Palmgren M, Morsomme P. 2018. The plasma membrane H+-ATPase, a simple polypeptide with a long history. Yeast, 2018, 1–10. [Google Scholar]
  119. Palmgren MG, Nissen P. 2011. P-type ATPases. Annual Review of Biophysics, 40, 243–266. [CrossRef] [PubMed] [Google Scholar]
  120. Panatala R, Hennrich H, Holthuis JCM. 2015. Inner workings and biological impact of phospholipid flippases. Journal of Cell Science, 128, 2021–2032. [CrossRef] [PubMed] [Google Scholar]
  121. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream M-A, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baqldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LRO, Barrell B, Cruz AK, Mottram JC, Smith DF, Berriman M. 2007. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genetics, 39, 839–847. [CrossRef] [PubMed] [Google Scholar]
  122. Pérez-Victoria FJ, Castanys S, Gamarro F. 2003. Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrobial Agents and Chemotherapy, 47, 2397–2403. [CrossRef] [PubMed] [Google Scholar]
  123. Pérez-Victoria FJ, Gamarro F, Ouellette M, Castanys S. 2003. Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. Journal of Biological Chemistry, 278, 49965–49971. [CrossRef] [Google Scholar]
  124. Pérez-Victoria FJ, Sánchez-Cañete MP, Castanys S, Gamarro F. 2006. Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. Journal of Biological Chemistry, 281, 23766–23775. [CrossRef] [Google Scholar]
  125. Pérez-Victoria FJ, Sánchez-Cañete MP, Seifert K, Croft SL, Sundar S, Castanys S, Gamarro F. 2006. Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resistance Update, 9, 26–39. [CrossRef] [PubMed] [Google Scholar]
  126. Qiu LY, Krieger E, Schaftenaar G, Swarts HG, Willems PH, De Pont JJ, Koenderink JB. 2005. Reconstruction of the complete ouabain-binding pocket of Na, K-ATPase in gastric H, K-ATPase by substitution of only seven amino acids. Journal of Biological Chemistry, 280, 32349–32355. [CrossRef] [Google Scholar]
  127. Rakotomanga M, Saint-Pierre-Chazalet M, Loiseau PM. 2005. Alterations of fatty acid and sterol metabolism in miltefosine-resistant Leishmania donovani promastigotes and consequences for drug-membrane interactions. Antimicrobial Agents and Chemotherapy, 49, 2677–2686. [CrossRef] [PubMed] [Google Scholar]
  128. Rakotomanga M, Blanc S, Gaudin K, Chaminade P, Loiseau PM. 2007. Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy, 51, 1425–1430. [CrossRef] [PubMed] [Google Scholar]
  129. Ramakrishnan S, Docampo R. 2018. Membrane proteins in trypanosomatids involve in Ca2+ homeostasis and signaling. Genes, 9, 304. [Google Scholar]
  130. Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat A-F, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubish C. 2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nature Genetics, 38, 1184–1191. [CrossRef] [PubMed] [Google Scholar]
  131. Ravera RR, Allegra P, Colombatto S, Salinas SP. 2000. Cystamine transport in spheroplasts of Saccharomyces cerevesiae. Physiological Chemistry and Physics and Medical NMR, 32, 137–144. [PubMed] [Google Scholar]
  132. Retamales-Ortega R, Vio CP, Inestrosa NC. 2016. P2C-Type ATPases and their regulation. Molecular Neurobiology, 53, 1343–1354. [CrossRef] [PubMed] [Google Scholar]
  133. Revelard P, Pays E. 1991. Structure and transcription of a P-ATPase gene from Trypanosoma brucei. Molecular and Biochemical Parasitology, 46, 241–251. [CrossRef] [PubMed] [Google Scholar]
  134. Riekhof WR, Voelker DR. 2009. The yeast plasma membrane P4-ATPases are major transporters for lysophospholipids. Biochimica et Biophysica Acta, 1791, 620–627. [CrossRef] [PubMed] [Google Scholar]
  135. Rocco-Machado N, Cosentino-Gomes D, Meyer-Fernandes J. 2015. Modulation of Na+/K+ ATPase activity by hydrogen peroxide generated through heme in L. amazonensis. PLoS One, 10, e0129604. [CrossRef] [PubMed] [Google Scholar]
  136. Rochette A, Raymond F, Ubeda J-M, Smith M, Messier N, Boisvert S, Rigault P, Corbeil J, Ouellette M, Papadopoulou B. 2008. Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics, 9, 255. [CrossRef] [PubMed] [Google Scholar]
  137. Rodriguez NM, Docampo R, Lu H-G, Scott DA. 2002. Overexpression of the Leishmania amazonensis Ca2+-ATPase gene lmaa1 enhances virulence. Cellular Microbiology, 4, 117–126. [CrossRef] [PubMed] [Google Scholar]
  138. Rodríguez-Navarro A, Benito B. 2010. Sodium or potassium efflux ATPase: a fungal, bryophyte or protozoal ATPase. Biochimica et Biophysica Acta, 1798, 1841–1853. [CrossRef] [PubMed] [Google Scholar]
  139. Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, Harris D, Her Y, Herzyk P, Imamura H, Otto TD, Sanders M, Seeger K, Dujardin JC, Berriman M, Smith DF, Hertz-Fowler C, Mottram JC. 2011. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Research, 21, 2129–2142. [CrossRef] [PubMed] [Google Scholar]
  140. Roland BP, Graham TR. 2016. Decoding P4-ATPase substrate interactions. Critical Reviews in Biochemistry and Molecular Biology, 51, 513–527. [CrossRef] [PubMed] [Google Scholar]
  141. Ruben L, Hutchinson A, Moehlman J. 1991. Calcium homeostasis in Trypanosoma brucei. Identification of a pH-sensitive non-mitochondrial calcium pool. Journal of Biological Chemistry, 266, 24351–24358. [Google Scholar]
  142. Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. 2016. The transporter classification database (TCDB): recent advances. Nucleic Acids Research, 44, D372–D379. [CrossRef] [PubMed] [Google Scholar]
  143. Sanyal S, Frank CG, Menon AK. 2008. Distinct flippases translocate glycerophospholipids and oligodisaccharide diphosphate dolichols across the endoplasmic reticulum. Biochemistry, 47, 7937–7946. [CrossRef] [PubMed] [Google Scholar]
  144. Sanyal S, Menon AK. 2009. Specific transbilayer translocation of dolichol-linked oligosaccharides by an endoplasmic reticulum flippase. Proceedings of the National Academy of Sciences of the United States of America, 106, 767–772. [CrossRef] [PubMed] [Google Scholar]
  145. Sanyal S, Menon AK. 2010. Stereoselective transbilayer translocation of mannosyl phosphoryl dolichol by an endoplasmic reticulum flippase. Proceedings of the National Academy of Sciences of the United States of America, 107, 11289–11294. [CrossRef] [PubMed] [Google Scholar]
  146. Saraiva VB, Gibaldi D, Previato JO, Mendonça-Previato L, Bozza MT, Freire-De-Lima CG, Heise N. 2002. Proinflammatory and cytotoxic effects of hexadecylphosphocholine (miltefosine) against drug-resistant strains of Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 46, 3472–3477. [CrossRef] [PubMed] [Google Scholar]
  147. Schwan WR, Warrener P, Keunz E, Stover CK, Folger KR. 2005. Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. International Journal of Medical Microbiology, 295, 237–242. [CrossRef] [Google Scholar]
  148. Scott DA, Docampo R. 1998. Two types of H+-ATPase are involved in the acidification of internal compartments in Trypanosoma cruzi. Biochemical Journal, 331, 583–589. [Google Scholar]
  149. Seifert K, Pérez-Victoria FJ, Stettler M, Sánchez-Cañete MP, Castanys S, Gamarro F, Croft SL. 2007. Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. International Journal of Antimicrobial Agents, 30, 229–235. [CrossRef] [PubMed] [Google Scholar]
  150. Shaw CD, Lonchamp J, Downing T, Imamura H, Freeman TM, Cotton JA, Sanders M, Blackburn G, Dujardin JC, Rijal S, Kanal B, Illingworth CJR, Coombs GH, Carter KC. 2016. In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomics characterization. Molecular Microbiology, 99, 1134–1148. [CrossRef] [PubMed] [Google Scholar]
  151. Siegel TN, Hekstra DR, Wang X, Dewel S, Cross GAM. 2010. Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Research, 38, 4946–4957. [CrossRef] [PubMed] [Google Scholar]
  152. Smith AT, Smith KP, Rosenzweig AC. 2014. Diversity of the metal-transporting P1B-type ATPases. Journal of Biological Inorganic Chemistry, 19, 947–960. [CrossRef] [Google Scholar]
  153. Sørensen DM, Holen HW, Holemans T, Vangheluwe P, Palmgren G. 2015. Towards defining the substrate of orphan P5A-ATPases. Biochimica et Biophysica Acta, 1850, 524–535. [CrossRef] [PubMed] [Google Scholar]
  154. Stiles JK, Kucerova Z, Sarfo B, Meade CA, Thompson P, Xue L, Meade JC. 2003. Identification of surface membrane P-type ATPases resembling fungal K+- and Na+-ATPases in Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. Annals of Tropical Medicine and Parasitology, 97, 351–366. [CrossRef] [PubMed] [Google Scholar]
  155. Suzuki C, Shimma Y. 1999. P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT. Molecular Microbiology, 34, 813–823. [Google Scholar]
  156. Suzuki C. 2001. Immunochemical and mutational analyses of P-type ATPase Spf1p involved in the yeast secretory pathway. Bioscience, Biotechnology, and Biochemistry, 65, 2405–2411. [CrossRef] [PubMed] [Google Scholar]
  157. Swarts HG, Koenderink JB, Willems PH, DePont JJ. 2005. The non-gastric H, K-ATPase is oligomycin sensitive and can function as an H+, NH4+-ATPase. Journal of Biological Chemistry, 280, 33115–33122. [CrossRef] [Google Scholar]
  158. Takar M, Wu Y, Graham TR. 2016. The essential Neo1 protein from budding yeast plays a role in establishing aminophospholipid asymmetry of the plasma membrane. Journal of Biological Chemistry, 291, 15727–15739. [CrossRef] [Google Scholar]
  159. Thever MD, Saier MH Jr. 2009. Bioinformatic characterization of P-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. Journal of Membrane Biology, 229, 115–130. [CrossRef] [Google Scholar]
  160. Toyoshima C, Nakasako M, Nomura H, Ogawa H. 2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature, 405, 647–655. [CrossRef] [PubMed] [Google Scholar]
  161. Tripathi A, Gupta CM. 2003. Transbilayer translocation of membrane phosphatidylserine and its role in macrophage invasion in Leishmania promastigotes. Molecular and Biochemical Parasitology, 128, 1–9. [CrossRef] [PubMed] [Google Scholar]
  162. Van Der Heyden N, Benaim G, Docampo R. 1996. The role of a H+-ATPase in the regulation of cytoplasmic pH in Trypanosoma cruzi epimastigotes. Biochemical Journal, 318, 103–109. [CrossRef] [Google Scholar]
  163. Van der Heyden N, Docampo R. 2000. Intracellular pH in mammalian stages of Trypanosoma cruzi is K+-dependent and regulated by H+-ATPases. Molecular and Biochemical Parasitology, 105, 237–251. [CrossRef] [PubMed] [Google Scholar]
  164. Van Der Heyden N, Wong J, Docampo R. 2000. A pyruvate-proton symport and an H+-ATPase regulate intracellular pH of Trypanosoma brucei bloodstream forms. Biochemical Journal, 346, 53–62. [Google Scholar]
  165. Van Der Heyden N, Docampo R. 2002. Proton and sodium pumps regulate the plasma membrane potential of different stages of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 120, 127–139. [CrossRef] [PubMed] [Google Scholar]
  166. Van Der Heyden N, Docampo R. 2002. Significant differences between procyclic and bloodstream forms of Trypanosoma brucei in the maintenance of their plasma membrane potential. Journal of Eukaryotic Microbiology, 49, 407–413. [CrossRef] [Google Scholar]
  167. van Zandbergen G, Bollinger A, Wenzel A, Kamhawi S, Voll R, Klinger M, Müller A, Hölscher C, Herrmann M, Sacks D, Solbach W, Laskay T. 2006. Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. Proceedings of the National Academy of Sciences of the United States of America, 103, 13837–13842. [CrossRef] [PubMed] [Google Scholar]
  168. Vashist S, Frank CG, Jakob CA, Ng DTW. 2002. Two distinctly localized P-type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Molecular Biology of the Cell, 21, 3955–3966. [Google Scholar]
  169. Vieira LL, Cabantchik ZI. 1995. Amino acid uptake and intracellular accumulation in Leishmania major promastigotes are largely determined by an H+-pump generated membrane potential. Molecular and Biochemical Parasitology, 75, 15–23. [CrossRef] [PubMed] [Google Scholar]
  170. Vieira M, Rohloff P, Luo S, Cunha-e-Silva NL, de Souza W, Docampo R. 2005. Role for a P-type H+-ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi. Biochemical Journal, 392, 467–474. [CrossRef] [Google Scholar]
  171. Wanderley JLM, Moreira MEC, Benjamin A, Bonomo AC, Barcinski MA. 2006. Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. Journal of Immunology, 176, 1834–1839. [CrossRef] [Google Scholar]
  172. Watanabe Y, Shimono Y, Tsuji H, Tamai Y. 2002. Role of the glutamic and aspartic residues in Na+-ATPase function in the ZrENA1 gene of Zygosaccharomyces rouxii. FEMS Microbiology Letter, 209, 39–43. [CrossRef] [Google Scholar]
  173. Weatherly DB, Boehlke C, Tarleton RL. 2009. Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics, 10, 255. [CrossRef] [PubMed] [Google Scholar]
  174. White C, Lee J, Kambe T, Fritsche K, Petris MJ. 2009. A role for the copper-transporting ATPase in macrophage bactericidal activity. Journal of Biological Chemistry, 284, 33949–33956. [CrossRef] [PubMed] [Google Scholar]
  175. Wiederhold E, Gandhi T, Permentier HP, Breitling R, Poolman B, Slotboom DJ. 2009. The yeast vacuolar membrane proteome. Molecular and Cellular Proteomics, 8, 380–392. [CrossRef] [Google Scholar]
  176. World Health Organization. 2006. Human African trypanosomiasis sleeping sickness: epidemiological update. Weekly Epidemiological Record, 8, 71–80. [Google Scholar]
  177. World Health Organization. 2019. Leishmaniasis: Fact sheet. Available from [Accessed 21 April, 2019]. [Google Scholar]
  178. World Health Organization. 2019. Leishmaniasis: situation and trends. Available from [Accessed 21 April, 2019]. [Google Scholar]
  179. World Health Organization. 2019. Chagas disease American Trypanosomiasis: fact sheet. Available from [Accessed 21 April, 2019]. [Google Scholar]
  180. Wu X, Weng L, Zhang J, Liu X, Huang J. 2018. The plasma membrane calcium ATPases in calcium signaling network. Current Protein & Peptide Science, 19, 813–822. [CrossRef] [PubMed] [Google Scholar]
  181. Xie Z, Cai T. 2003. Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Molecular Interventions, 3, 157–168. [CrossRef] [PubMed] [Google Scholar]
  182. Yakubu MA, Majumder S, Kierszenbaum F. 1994. Changes in Trypanosoma cruzi infectivity by treatments that affect calcium ion levels. Molecular and Biochemical Parasitology, 66, 119–125. [CrossRef] [PubMed] [Google Scholar]
  183. Yatime L, Buch-Pedersen MJ, Musgaard M, Morth JP, Winther A-ML, Pedersen BP, Olesen C, Andersen JP, Vilsen B, Schiøtt B, Palmgren MG, Møller JV, Nissen P, Fedosova N. 2009. P-type ATPases as drug targets: tools for medicine and science. Biochimica et Biophysica Acta, 1787, 207–220. [CrossRef] [PubMed] [Google Scholar]
  184. Yuan DS, Dancis A, Klausner RD. 1997. Restriction of copper export in Saccharomyces cerevesiae to a late Golgi or post Golgi compartment in the secretory pathway. Journal of Biological Chemistry, 272, 25787–25793. [CrossRef] [Google Scholar]
  185. Zhang WW, Ramasamy G, McCall L-I, Haydock A, Ranasinghe S, Abeygunasekara P, Sirimanna G, Wickremasinghe R, Myler P, Matlashewski G. 2014. Genetic analysis of Leishmania donovani tropism using a naturally attenuated cutaneous strain. PLoS Pathogens, 10, e1004244. [CrossRef] [PubMed] [Google Scholar]
  186. Zilberstein D, Dwyer DM. 1985. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proceedings of the National Academy of Sciences of the United States of America, 82, 1716–1720. [CrossRef] [PubMed] [Google Scholar]
  187. Zilberstein D, Dwyer DM. 1988. Identification of a surface membrane proton-translocating ATPase in promastigotes of the parasitic protozoan Leishmania donovani. Biochemical Journal, 256, 13–21. [CrossRef] [Google Scholar]
  188. Zilberstein D, Philosoph H, Gepstein A. 1989. Maintenance of cytoplasmic pH and proton motive force in promastigotes of Leishmania donovani. Molecular and Biochemical Parasitology, 36, 109–118. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.