Open Access
Issue
Parasite
Volume 26, 2019
Article Number 58
Number of page(s) 9
DOI https://doi.org/10.1051/parasite/2019050
Published online 19 September 2019
  1. Ahmadpour E, Sarvi S, Hashemi Soteh MB, Sharif M, Rahimi MT, Valadan R, Tehrani M, Khalilian A, Montazeri M, Daryani A. 2017. Evaluation of the immune response in BALB/c mice induced by a novel DNA vaccine expressing GRA14 against Toxoplasma gondii. Parasite Immunology, 39(4). [Google Scholar]
  2. Bougdour A, Tardieux I, Hakimi MA. 2014. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cellular Microbiology, 16(3), 334–343. [CrossRef] [PubMed] [Google Scholar]
  3. Bounous DI, Campagnoli RP, Brown J. 1992. Comparison of MTT colorimetric assay and tritiated thymidine uptake for lymphocyte proliferation assays using chicken splenocytes. Avian Diseases, 36(4), 1022–1027. [CrossRef] [PubMed] [Google Scholar]
  4. Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA. 2013. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. Journal of Experimental Medicine, 210(10), 2071–2086. [CrossRef] [Google Scholar]
  5. Chen J, Huang SY, Li ZY, Yuan ZG, Zhou DH, Petersen E, Zhang NZ, Zhu XQ. 2013. Protective immunity induced by a DNA vaccine expressing eIF4A of Toxoplasma gondii against acute toxoplasmosis in mice. Vaccine, 31(13), 1734–1739. [CrossRef] [PubMed] [Google Scholar]
  6. Chen J, Li ZY, Petersen E, Huang SY, Zhou DH, Zhu XQ. 2015. DNA vaccination with genes encoding Toxoplasma gondii antigens ROP5 and GRA15 induces protective immunity against toxoplasmosis in Kunming mice. Expert Review of Vaccines, 14(4), 617–624. [CrossRef] [PubMed] [Google Scholar]
  7. Coombs GH, Muller S. 2002. Recent advances in the search for new anti-coccidial drugs. International Journal for Parasitology, 32(5), 497–508. [CrossRef] [PubMed] [Google Scholar]
  8. Dubey JP. 2008. The history of Toxoplasma gondii-the first 100 years. Journal of Eukaryotic Microbiology, 55(6), 467–475. [CrossRef] [Google Scholar]
  9. Dubey JP, Hill DE, Jones JL, Hightower AW, Kirkland E, Roberts JM, Marcet PL, Lehmann T, Vianna MC, Miska K, Sreekumar C, Kwok OC, Shen SK, Gamble HR. 2005. Prevalence of viable Toxoplasma gondii in beef, chicken, and pork from retail meat stores in the United States: risk assessment to consumers. Journal of Parasitology, 91(5), 1082–1093. [CrossRef] [Google Scholar]
  10. Fayer R, Dubey JP, Lindsay DS. 2004. Zoonotic protozoa: from land to sea. Trends in Parasitology, 20(11), 531–536. [CrossRef] [PubMed] [Google Scholar]
  11. Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A. 1992. Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. Journal of Immunology, 149(1), 175–180. [Google Scholar]
  12. Gigley JP, Fox BA, Bzik DJ. 2009. Cell-mediated immunity to Toxoplasma gondii develops primarily by local Th1 host immune responses in the absence of parasite replication. Journal of Immunology, 182(2), 1069–1078. [CrossRef] [Google Scholar]
  13. Gurunathan S, Wu CY, Freidag BL, Seder RA. 2000. DNA vaccines: a key for inducing long-term cellular immunity. Current Opinion in Immunology, 12(4), 442–447. [CrossRef] [PubMed] [Google Scholar]
  14. Hakim FT, Gazzinelli RT, Denkers E, Hieny S, Shearer GM, Sher A. 1991. CD8+ T cells from mice vaccinated against Toxoplasma gondii are cytotoxic for parasite-infected or antigen-pulsed host cells. Journal of Immunology, 147(7), 2310–2316. [Google Scholar]
  15. Harris TH, Banigan EJ, Christian DA, Konradt C, Tait Wojno ED, Norose K, Wilson EH, John B, Weninger W, Luster AD, Liu AJ, Hunter CA. 2012. Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells. Nature, 486(7404), 545–548. [CrossRef] [PubMed] [Google Scholar]
  16. Hill DE, Chirukandoth S, Dubey JP. 2005. Biology and epidemiology of Toxoplasma gondii in man and animals. Animal Health Research Reviews, 6(1), 41–61. [CrossRef] [PubMed] [Google Scholar]
  17. Hiszczynska-Sawicka E, Oledzka G, Holec-Gasior L, Li H, Xu JB, Sedcole R, Kur J, Bickerstaffe R, Stankiewicz M. 2011. Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Veterinary Parasitology, 177(3–4), 281–289. [CrossRef] [PubMed] [Google Scholar]
  18. Innes EA, Vermeulen AN. 2006. Vaccination as a control strategy against the coccidial parasites Eimeria, Toxoplasma and Neospora. Parasitology, 133 Suppl, S145–68. [CrossRef] [PubMed] [Google Scholar]
  19. Khan IA, MacLean JA, Lee FS, Casciotti L, DeHaan E, Schwartzman JD, Luster AD. 2000. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity, 12(5), 483–494. [CrossRef] [PubMed] [Google Scholar]
  20. Liu MM, Yuan ZG, Peng GH, Zhou DH, He XH, Yan C, Yin CC, He Y, Lin RQ, Song HQ, Zhu XQ. 2010. Toxoplasma gondii microneme protein 8 (MIC8) is a potential vaccine candidate against toxoplasmosis. Parasitology Research, 106(5), 1079–1084. [CrossRef] [PubMed] [Google Scholar]
  21. Matowicka-Karna J, Dymicka-Piekarska V, Kemona H. 2009. Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha)? Clinical & Developmental Immunology, 2009, 374696. [CrossRef] [PubMed] [Google Scholar]
  22. Nam HW. 2009. GRA proteins of Toxoplasma gondii: maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. Korean Journal of Parasitology, 47 Suppl, S29–137. [CrossRef] [Google Scholar]
  23. Naserifar R, Ghaffarifar F, Dalimi A, Sharifi Z, Solhjoo K, Hosseinian Khosroshahi K. 2015. Evaluation of immunogenicity of cocktail DNA vaccine containing plasmids encoding complete GRA5, SAG1, and ROP2 antigens of Toxoplasma gondii in BALB/C mice. Iranian Journal of Parasitology, 10(4), 590–598. [PubMed] [Google Scholar]
  24. Peng GH, Yuan ZG, Zhou DH, He XH, Liu MM, Yan C, Yin CC, He Y, Lin RQ, Zhu XQ. 2009. Toxoplasma gondii microneme protein 6 (MIC6) is a potential vaccine candidate against toxoplasmosis in mice. vaccine, 27(47), 6570–6574. [CrossRef] [PubMed] [Google Scholar]
  25. Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, Soldati-Favre D. 2008. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host & Microbe, 3(2), 77–87. [CrossRef] [PubMed] [Google Scholar]
  26. Robben PM, LaRegina M, Kuziel WA, Sibley LD. 2005. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. Journal of Experimental Medicine, 201(11), 1761–1769. [CrossRef] [Google Scholar]
  27. Shaddel M, Ebrahimi M, Tabandeh MR. 2018. Bioinformatics analysis of single and multi-hybrid epitopes of GRA-1, GRA-4, GRA-6 and GRA-7 proteins to improve DNA vaccine design against Toxoplasma gondii. Journal of Parasitic Disease, 42(2), 269–276. [CrossRef] [Google Scholar]
  28. Shastri AJ, Marino ND, Franco M, Lodoen MB, Boothroyd JC. 2014. GRA25 is a novel virulence factor of Toxoplasma gondii and influences the host immune response. Infection and Immunity, 82(6), 2595–2605. [CrossRef] [PubMed] [Google Scholar]
  29. Sun X, Mei M, Zhang X, Han F, Jia B, Wei X, Chang Z, Lu H, Yin J, Chen Q, Jiang N. 2014. The extracellular matrix protein mindin as a novel adjuvant elicits stronger immune responses for rBAG1, rSRS4 and rSRS9 antigens of Toxoplasma gondii in BALB/c mice. BMC Infectious Diseases, 14, 429. [CrossRef] [PubMed] [Google Scholar]
  30. Tenter AM, Heckeroth AR, Weiss LM. 2000. Toxoplasma gondii: from animals to humans. International Journal for Parasitology, 30(12–13), 1217–1258. [CrossRef] [PubMed] [Google Scholar]
  31. Vazini H, Ghafarifar F, Sharifi Z, Dalimi A. 2018. Evaluation of immune responses induced by GRA7 and ROP2 genes by DNA vaccine cocktails against acute toxoplasmosis in BALB/c mice. Avicenna Journal of Medical Biotechnology, 10(1), 2–8. [PubMed] [Google Scholar]
  32. Wang JL, Zhang NZ, Li TT, He JJ, Elsheikha HM, Zhu XQ. 2019. Advances in the development of anti-Toxoplasma gondii vaccines: challenges, opportunities, and perspectives. Trends in Parasitology, 35(3), 239–253. [CrossRef] [PubMed] [Google Scholar]
  33. Xue M, He S, Cui Y, Yao Y, Wang H. 2008. Evaluation of the immune response elicited by multi-antigenic DNA vaccine expressing SAG1, ROP2 and GRA2 against Toxoplasma gondii. Parasitology International, 57(4), 424–429. [CrossRef] [PubMed] [Google Scholar]
  34. Yan HK, Yuan ZG, Song HQ, Petersen E, Zhou Y, Ren D, Zhou DH, Li HX, Lin RQ, Yang GL, Zhu XQ. 2012. Vaccination with a DNA vaccine coding for perforin-like protein 1 and MIC6 induces significant protective immunity against Toxoplasma gondii. Clinical and Vaccine Immunology, 19(5), 684–689. [CrossRef] [Google Scholar]
  35. Yuan ZG, Zhang XX, Lin RQ, Petersen E, He S, Yu M, He XH, Zhou DH, He Y, Li HX, Liao M, Zhu XQ. 2011. Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18. Vaccine, 29(38), 6614–6619. [CrossRef] [PubMed] [Google Scholar]
  36. Zheng B, Ding J, Chen X, Yu H, Lou D, Tong Q, Kong Q, Lu S. 2017. Immuno-efficacy of a T. gondii secreted protein with an altered thrombospondin repeat (TgSPATR) as a novel DNA vaccine candidate against acute toxoplasmosis in BALB/c mice. Frontiers in Microbiology, 8, 216. [PubMed] [Google Scholar]
  37. Zheng B, He A, Gan M, Li Z, He H, Zhan X. 2009. MIC6 associates with aldolase in host cell invasion by Toxoplasma gondii. Parasitology Research, 105(2), 441–445. [CrossRef] [PubMed] [Google Scholar]
  38. Zhou J, Wang L. 2017. SAG4 DNA and peptide vaccination provides partial protection against T. gondii infection in BALB/c Mice. Frontiers in Microbiology, 8, 1733. [CrossRef] [PubMed] [Google Scholar]
  39. Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. 2015. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Review of Vaccines, 14(12), 1609–1621. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.