Open Access
Issue
Parasite
Volume 26, 2019
Article Number 55
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2019053
Published online 06 September 2019
  1. Adhami J, Reiter P. 1998. Introduction and establishment of Aedes (Stegomyia) albopictus skuse (Diptera: Culicidae) in Albania. Journal of the American Mosquito Control Association, 14(3), 340–343. [PubMed] [Google Scholar]
  2. Alibert P, Moureau B, Dommergues J-L, David B. 2001. Differentiation at a microgeographical scale within two species of ground beetle, Carabus auronitens and C. nemoralis (Coleoptera, Carabidae): a geometrical approach. Zoologica Scripta, 30(4), 299–311. [Google Scholar]
  3. Alto BW, Juliano SA. 2001. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. Journal of Medical Entomology, 38(5), 646–656. [CrossRef] [PubMed] [Google Scholar]
  4. Aytekin A, Alten B, Caglar SS, Ozbel Y, Kaynas S, Simsek F, Kasap O, Belen A. 2007. Phenotypic variation among local populations of phlebotomine sand flies (Diptera: Psychodidae) in southern Turkey. Journal of Vector Ecology, 32(2), 226–234. [CrossRef] [Google Scholar]
  5. Aytekin S, Aytekin A, Alten B. 2009. Effect of different larval rearing temperatures on the productivity (R o) and morphology of the malaria vector Anopheles superpictus Grassi (Diptera: Culicidae) using geometric morphometrics. Journal of Vector Ecology, 34(1), 32–42. [CrossRef] [Google Scholar]
  6. Balestrino F, Puggioli A, Gilles JR, Bellini R. 2014. Validation of a new larval rearing unit for Aedes albopictus (Diptera: Culicidae) mass rearing. PLoS One, 9(3), e91914. [CrossRef] [PubMed] [Google Scholar]
  7. Bitner-Mathá B, Klaczko L. 1999. Plasticity of Drosophila melanogaster wing morphology: effects of sex, temperature and density. Genetica, 105(2), 203–210. [PubMed] [Google Scholar]
  8. Blackmore MS, Lord CC. 2000. The relationship between size and fecundity in Aedes albopictus . Journal of Vector Ecology, 25(2), 212–217. [Google Scholar]
  9. Bonizzoni M, Gasperi G, Chen X, James AA. 2013. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends in Parasitology, 29(9), 460–468. [CrossRef] [PubMed] [Google Scholar]
  10. Bookstein FL. 1991. Morphometric tools for landmark data. Cambridge, UK: Cambridge University Press. p. 435. [Google Scholar]
  11. Briegel H, Timmermann SE. 2001. Aedes albopictus (Diptera: Culicidae): physiological aspects of development and reproduction. Journal of Medical Entomology, 38(4), 566–571. [CrossRef] [PubMed] [Google Scholar]
  12. Damiens D, Lebon C, Wilkinson DA, Dijoux-Millet D, Le Goff G, Bheecarry A, Gouagna LC. 2016. Cross-Mating compatibility and competitiveness among Aedes albopictus strains from distinct geographic origins – implications for future application of SIT Programs in the South West Indian Ocean Islands. PLoS One, 11(11), e0163788. [CrossRef] [PubMed] [Google Scholar]
  13. Darriet F. 2016. Development of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae feeding on the plant material contained in the water. Annals of Community Medicine and Practice, 2(1), 1014. [Google Scholar]
  14. Dujardin JP. 2008. Morphometrics applied to medical entomology. Infection, Genetics and Evolution, 8(6), 875–890. [CrossRef] [Google Scholar]
  15. Dujardin JP, Slice D. 2007. Contributions of morphometrics to medical entomology, in Encyclopedia of Infectious Diseases: Modern Methodologies, Tibayrenc M, Editors. John Wiley & Sons Inc.: Hoboken, NJ. p. 435–447. [CrossRef] [Google Scholar]
  16. Gilchrist GW, Huey RB. 2004. Plastic and genetic variation in wing loading as a function of temperature within and among parallel clines in Drosophila subobscura . Integrative and Comparative Biology, 44, 461–470. [CrossRef] [PubMed] [Google Scholar]
  17. Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED. 2002. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. Journal of Medical Entomology, 39(1), 162–172. [CrossRef] [PubMed] [Google Scholar]
  18. Gojkovic N, Ludoski J, Krtinic B, Milankov V. 2019. The first molecular and phenotypic characterization of the invasive population of Aedes albopictus (Diptera: Culicidae) from the Central Balkans. Journal of Medical Entomology, pii: tjz064. DOI: 10.1093/jme/tjz064. [Google Scholar]
  19. Gratz NG. 2004. Critical review of the vector status of Aedes albopictus . Medical and Veterinary Entomology, 18(3), 215–227. [CrossRef] [PubMed] [Google Scholar]
  20. Hammer Ø, Harper DAT, Ryan PD. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 9. [Google Scholar]
  21. Hawley WA. 1988. The biology of Aedes albopictus. Journal of the American Mosquito Control Association. Supplement, 1, 1–39. [Google Scholar]
  22. Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353–357. [CrossRef] [PubMed] [Google Scholar]
  23. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Elyazar IRF, Teng H-J, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GRW, Golding N, Hay SI. 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus . eLife, 4, e08347. [CrossRef] [PubMed] [Google Scholar]
  24. Lacour G. 2016. Eco-physiological mechanisms and adaptive value of egg diapause in the invasive mosquito Aedes albopictus (Diptera: Culicidae). Belgium: Royal Belgian Institute of Natural Sciences. [Google Scholar]
  25. Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, Van Bortel W. 2012. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne and Zoonotic Diseases, 12(6), 435–447. [CrossRef] [PubMed] [Google Scholar]
  26. Morales Vargas RE, Phumala-Morales N, Tsunoda T, Apiwathnasorn C, Dujardin JP. 2013. The phenetic structure of Aedes albopictus . Infection, Genetics and Evolution, 13, 242–251. [CrossRef] [Google Scholar]
  27. Parker AT, Gardner AM, Perez M, Allan BF, Muturi EJ. 2019. Container size alters the outcome of interspecific competition between Aedes aegypti (Diptera: Culicidae) and Aedes albopictus . Journal of Medical Entomology, 56(3), 708–715. [CrossRef] [PubMed] [Google Scholar]
  28. Phanitchat T, Apiwathnasorn C, Sungvornyothin S, Samung Y, Dujardin S, Dujardin JP, Sumruayphol S. 2019. Geometric morphometric analysis of the effect of temperature on wing size and shape in Aedes albopictus . Medical and Veterinary Entomology. DOI: 10.1111/mve.12385. [Google Scholar]
  29. Puggioli A, Carrieri M, Dindo ML, Medici A, Lees RS, Gilles JR, Bellini R. 2017. Development of Aedes albopictus (Diptera: Culicidae) larvae under different laboratory conditions. Journal of Medical Entomology, 54(1), 142–149. [CrossRef] [PubMed] [Google Scholar]
  30. Ray C. 1960. The application of Bergmann’s and Allen’s Rules to the poikilotherms. Journal of Morphology, 106, 85–108. [CrossRef] [PubMed] [Google Scholar]
  31. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A, group Cs. 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet, 370(9602), 1840–1846. [CrossRef] [PubMed] [Google Scholar]
  32. Ricklefs RE, Miles DB. 1994. Ecological and evolutionary inferences from morphology: an ecological perspective. Ecological Morphology: Integrative Organismal Biology, 1, 13–41. [Google Scholar]
  33. Rohlf F. 1993. Relative warp analysis and an example of its application to mosquito wings, in Contributions to Morphometrics, Marcus LF, Bello Rojo E, Garcia-Valdecasas A, Editors. Museo Nacional de Ciencias Naturales: Madrid, Spain. p. 131. [Google Scholar]
  34. Rohlf F. 1999. Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification, 16, 197–223. [Google Scholar]
  35. Rohlf FJ. 2015. tpsDIG2 version 2.18. Stony Brook, NY: Department of Ecology and Evolution, State University of New York. [Google Scholar]
  36. Rohlf FJ. 2015. tpsUtil, file utility program. version 1.60. Stony Brook, NY: Department of Ecology and Evolution, State University of New York. [Google Scholar]
  37. Rohlf FJ, Slice D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39(1), 40–59. [Google Scholar]
  38. Schneider JR, Mori A, Romero-Severson J, Chadee DD, Severson DW. 2007. Investigations of dengue-2 susceptibility and body size among Aedes aegypti populations. Medical and Veterinary Entomology, 21(4), 370–376. [CrossRef] [PubMed] [Google Scholar]
  39. Sendaydiego JP, Torres MAJ, Demayo CG. 2013. Describing wing geometry of Aedes Aegypti using landmark-based geometric morphometrics. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4), 379–383. [Google Scholar]
  40. Strickman D, Kittayapong P. 2003. Dengue and its vectors in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat. American Journal of Tropical Medicine and Hygiene, 68(2), 209–217. [CrossRef] [Google Scholar]
  41. Team RC. 2014. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2012. ISBN 3-900051-07-0. [Google Scholar]
  42. Tisseuil C, Velo E, Bino S, Kadriaj P, Mersini K, Shukullari A, Simaku A, Rogozi E, Caputo B, Ducheyne E, Della Torre A, Reiter P, Gilbert M. 2018. Forecasting the spatial and seasonal dynamic of Aedes albopictus oviposition activity in Albania and Balkan countries. PLoS Neglected Tropical Diseases, 12(2), e0006236. [CrossRef] [PubMed] [Google Scholar]
  43. Velo E, Kadriaj P, Mersini K, Shukullari A, Manxhari B, Simaku A, Hoxha A, Caputo B, Bolzoni L, Rosa R, Bino S, Reiter P, della Torre A. 2016. Enhancement of Aedes albopictus collections by ovitrap and sticky adult trap. Parasites & Vectors, 9, 223. [CrossRef] [PubMed] [Google Scholar]
  44. Virginio F, Vidal P, Suesdek L. 2015. Wing sexual dimorphism of pathogen-vector culicids. Parasites & Vectors, 8(1), 159–167. [CrossRef] [PubMed] [Google Scholar]
  45. Wormington JD, Juliano SA. 2014. Sexually dimorphic body size and development time plasticity in Aedes mosquitoes (Diptera: Culicidae). Evolutionary Ecology Research, 16, 223–234. [PubMed] [Google Scholar]
  46. Xia D, Guo X, Hu T, Li L, Teng PY, Yin QQ, Luo L, Xie T, Wei YH, Yang Q, Li SK, Wang YJ, Xie Y, Li YJ, Wang CM, Yang ZC, Chen XG, Zhou XH. 2018. Photoperiodic diapause in a subtropical population of Aedes albopictus in Guangzhou, China: optimized field-laboratory-based study and statistical models for comprehensive characterization. Infectious Diseases of Poverty, 7(1), 89. [CrossRef] [PubMed] [Google Scholar]
  47. Xue RD, Barnard DR, Schreck CE. 1995. Influence of body size and age of Aedes albopictus on human host attack rates and the repellency of deet. Journal of the American Mosquito Control Association, 11(1), 50–53. [PubMed] [Google Scholar]
  48. Zamburlini R, Frilli F. 2003. La corretta identificazione delle uova di Aedes albopictus . Igiene Alimenti – Disinfestazione & Igiene Ambientale, 3(4), 8–10. [Google Scholar]
  49. Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2004. Geometric morphometrics for biologists: a primer. Cambridge, MA: Academic Press. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.