Open Access
Issue
Parasite
Volume 26, 2019
Article Number 17
Number of page(s) 7
DOI https://doi.org/10.1051/parasite/2019017
Published online 22 March 2019
  1. Biagini GA, Viriyavejakul P, O’Neill PM, Bray PG, Ward S-A. 2006. Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrobial Agents and Chemotherapy, 50, 1841–1851. [CrossRef] [PubMed] [Google Scholar]
  2. Birch-Machin MA, Turnbull DM. 2001. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. Methods in Cell Biology, 65, 97–117. [CrossRef] [PubMed] [Google Scholar]
  3. Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. [CrossRef] [PubMed] [Google Scholar]
  4. Čermáková P, Verner Z, Man P, Lukeš J, Horváth A. 2007. Characterization of the NADH:ubiquinone oxidoreductase (complex I) in the trypanosomatid Phytomonas serpens (Kinetoplastida). FEBS Journal, 274, 3150–3158. [CrossRef] [Google Scholar]
  5. Degli Esposti M, Ngo A, McMullen GL, Ghelli A, Sparla F, Benelli B, Ratta M, Linnane MW. 1996. The specificity of mitochondrial complex I for ubiquinones. Biochemical Journal, 313, 327–334. [CrossRef] [Google Scholar]
  6. Fang F, Beattie DS. 2002. Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria. Molecular and Biochemical Parasitology, 123, 135–142. [CrossRef] [PubMed] [Google Scholar]
  7. Gonzalez-Halphen D, Maslov DA. 2004. NADH-ubiquinone oxidoreductase activity in the kinetoplasts of the plant trypanosomatid Phytomonas serpens. Parasitology Research, 92, 341–346. [CrossRef] [PubMed] [Google Scholar]
  8. Gutman M, Singer TP, Beinert H, Casida J-E. 1970. Reaction sites of rotenone, piericidin A, and amytal in relation to the nonheme iron components of NADH dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 65, 763–770. [CrossRef] [PubMed] [Google Scholar]
  9. Haefeli RH, Erb M, Gemperli AC, Robay D, Courdier Fruh I, Anklin C, Dallmann R, Gueven N. 2011. NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS One, 6, e17963. [CrossRef] [PubMed] [Google Scholar]
  10. Horvath A, Berry EA, Huang L, Maslov DA. 2000. Leishmania tarentolae: a parallel isolation of cytochrome bc 1 and cytochrome c oxidase. Experimental Parasitology, 96, 160–167. [CrossRef] [PubMed] [Google Scholar]
  11. Horvath A, Horáková E, Dunajčíková P, Verner Z, Pravdová E, Šlapetová I. 2005. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Molecular Microbiology, 58, 116–130. [CrossRef] [PubMed] [Google Scholar]
  12. Kido Y, Sakamoto K, Nakamura K, Harada M, Suzuki Y, Yabu Y. 2010. Purification and kinetic characterization of recombinant alternative oxidase from Trypanosoma brucei brucei. Biochmica et Biophysica Acta, 1797, 443–450. [CrossRef] [Google Scholar]
  13. Kirby DM, Thorburn DR. 2008. Approaches to finding the molecular basis of mitochondrial oxidative phosphorylation disorders. Twin Research and Human Genetics, 11, 395–411. [CrossRef] [Google Scholar]
  14. Lukeš J, Regmi R, Breitling R, Mureev S, Kushnir S, Pyatkov K. 2006. Translational initiation in Leishmania tarentolae and Phytomonas serpens Kinetoplastida is strongly influenced by pre-ATG triplet and its 5 sequence context. Molecular and Biochemical Parasitology, 148, 125–132. [CrossRef] [PubMed] [Google Scholar]
  15. Nawathean P, Maslov DA. 2000. The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas serpens. Current Genetics, 38, 95–103. [CrossRef] [PubMed] [Google Scholar]
  16. Opperdoes FR, Coombs GH. 2007. Metabolism of Leishmania: proven and predicted. Trends in Parasitology, 23, 149–158. [CrossRef] [PubMed] [Google Scholar]
  17. Ott R, Chibale K, Anderson S, Chipeleme A, Chaudhuri M, Guerrah A, Colowick N, Hill GC. 2006. Novel inhibitors of the trypanosome alternative oxidase inhibit Trypanosoma brucei brucei growth and respiration. Acta Tropica, 100, 172–184. [CrossRef] [PubMed] [Google Scholar]
  18. Sloof P, Arts GJ, van den Burg J, van der Spek H, Benne R. 1994. RNA editing in mitochondria of cultured trypanosomatids: translatable mRNAs for NADH-dehydrogenase subunits are missing. Journal of Bioenergetics and Biomembranes, 26, 193–203. [CrossRef] [PubMed] [Google Scholar]
  19. Škodová I, Verner Z, Bringaud F, Fabian P, Lukeš J, Horváth A. 2013. Characterization of two mitochondrial flavin adenine dinucleotide-dependent glycerol-3-phosphate dehydrogenases in Trypanosoma brucei. Eukaryotic Cell, 12, 1664–1673. [Google Scholar]
  20. Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. 2015. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Molecular Microbiology, 96, 55–67. [CrossRef] [PubMed] [Google Scholar]
  21. Tielens AGM, van Hellemond JJ. 2009. Surprising variety in energy metabolism within Trypanosomatidae. Trends in Parasitology, 25, 482–490. [CrossRef] [PubMed] [Google Scholar]
  22. Trumpower BL, Edwards C-A. 1979. Purification of a reconstitutively active iron-sulfurprotein (oxidation factor) from succinate cytochrome c reductase complex of bovine heart mitochondria. Journal of Biological Chemistry, 254, 8697–8706. [Google Scholar]
  23. Verner Z, Čermáková P, Škodová I, Kriegová E, Horváth A, Lukeš J. 2011. Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. Molecular and Biochemical Parasitology, 175, 196–200. [CrossRef] [PubMed] [Google Scholar]
  24. Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. 2014. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Molecular and Biochemical Parasitology, 193, 55–65. [CrossRef] [PubMed] [Google Scholar]
  25. Vondrušková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R. 2005. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. Journal of Biological Chemistry, 280, 2429–2438. [CrossRef] [Google Scholar]
  26. Vos M, Geens A, Böhm C, Deaulmerie L, Swerts J, Rossi M, Craessaerts K, Leites EP, Seibler P, Rakovic A, Lohnau T, De Strooper T, Fendt SM, Morais V-A, Klein C, Verstreken P. 2017. Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency. Journal of Cell Biology, 216, 695–708. [CrossRef] [Google Scholar]
  27. Wang Y, Hekimi S. 2016. Understanding Ubiquinone. Trends in Cell Biology, 26, 367–378. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.