Open Access
Research Article
Issue
Parasite
Volume 26, 2019
Article Number 23
Number of page(s) 8
DOI https://doi.org/10.1051/parasite/2019024
Published online 17 April 2019
  1. Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. [Google Scholar]
  2. Adams RP. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed. IL, USA: A. P. C. C. Stream, Ed. [Google Scholar]
  3. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Dirsch VM, Stuppner H. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. [CrossRef] [PubMed] [Google Scholar]
  4. Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils – a review. Food and Chemical Toxicology, 46(2), 446–475. [CrossRef] [PubMed] [Google Scholar]
  5. Ballabeni V, Tognolini M, Bertoni S, Bruni R, Guerrini A, Rueda GM, Barocelli E. 2007. Antiplatelet and antithrombotic activities of essential oil from wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) calices from Amazonian Ecuador. Pharmacological Research, 55(1), 23–30. [CrossRef] [PubMed] [Google Scholar]
  6. Barbosa JDF, Silva VB, Alves PB, Gumina G, Santos RLC, Sousa DP, Cavalcanti SCH. 2012. Structure-activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Management Science, 68(11), 1478–1483. [CrossRef] [PubMed] [Google Scholar]
  7. Bhalla Y, Gupta VK, Jaitak V. 2013. Anticancer activity of essential oils: a review. Journal of the Science of Food and Agriculture, 93(15), 3643–3653. [CrossRef] [PubMed] [Google Scholar]
  8. Bond JG, Marina CF, Williams T. 2004. The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Medical and Veterinary Entomology, 18(1), 50–56. [CrossRef] [PubMed] [Google Scholar]
  9. Bruni R, Medici A, Andreotti E, Fantin C, Muzzoli M, Dehesa M, Romagnoli C, Sacchetti G. 2004. Chemical composition and biological activities of Ishpingo essential oil, a traditional Ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower calices. Food Chemistry, 85(3), 415–442. [Google Scholar]
  10. Cavalcanti ES, Morais SM, Lima MA, Santana EW. 2004. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Memórias do Instituto Oswaldo Cruz, 99(5), 541–544. [CrossRef] [PubMed] [Google Scholar]
  11. Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R. 2013. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasites and Vectors, 6, 280. [CrossRef] [Google Scholar]
  12. Costa A, Naspi C, Lucia A. 2017. Repellent and larvicidal activity of the essential oil from Eucalyptus nitens against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 54(3), 670–676. [CrossRef] [PubMed] [Google Scholar]
  13. Da Silva Lima A, Do Nascimento Sousa Filho JG, Garcia Pereira S, Skelding Pinheiro Guillon GM, Da Silva Santos L, Costa Júnior LM. 2014. Acaricide activity of different extracts from Piper tuberculatum fruits against Rhipicephalus microplus . Parasitology Research, 113(1), 107–112. [CrossRef] [PubMed] [Google Scholar]
  14. Darsie RF, Ward RA. 2005. Identification and geographical distribution of the mosquitoes of North America, North of Mexico. Gainesville, FL: University of Florida Press, 1–313. [Google Scholar]
  15. Deschamps C, Raskin I, Simon J. 2008. Regulation of essential oil in Basil (Ocimum basilicum L.) in response to elicitation. International Journal of Plant Sciences, 169(8), 981–986. [Google Scholar]
  16. Finney DJ. 1952. Probit analysis, 2nd edn. Journal of the Institute of Actuaries, 78(3), 388–390. [Google Scholar]
  17. Finney DJ. 1971. Probit analysis, 3rd edn. Cambridge, United Kingdom: Cambridge University Press, Edition. [Google Scholar]
  18. Guerrini A, Sacchetti G, Rossi D, Paganetto G, Muzzoli M, Andreotti E, Tognolini M, Maldonado ME, Bruni R. 2009. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environmental Toxicology and Pharmacology, 27(1), 39–48. [CrossRef] [PubMed] [Google Scholar]
  19. Guerrini A, Rossi D, Grandini A, Scalvenzi L, Rivera PFN, Andreotti E, Tacchini M, Spagnoletti A, Poppi I, Maietti S, Sacchetti G. 2014. Biological and chemo-diverse characterization of Amazonian (Ecuador) Citrus petitgrains . Journal of Applied Botany and Food Quality, 87, 108–116. [Google Scholar]
  20. Klowden MJ, Held GA, Bulla LA. 1983. Toxicity of Bacillus thuringiensis subsp. israelensis to adult Aedes aegypti mosquitoes. Applied and Environmental Microbiology, 46(2), 312–315. [PubMed] [Google Scholar]
  21. Mittermeier RA, Goettsch CM. 1997. Megadiversity: Earth’s biologically wealthiest nations. San Pedro Garza García, México: CEMEX Conservation Book Series. [Google Scholar]
  22. Mota MSCS, Silva RS, Silva GA, Picanco MC. 2017. Potential of allelochemicals from basil (Ocimum micranthum Willd.) to control whitefly (Aleurodicus cocois (Curtis 1846)) in cashew nut crop (Anacardium occidentale L.). Allelopathy Journal, 40(2), 197–208. [CrossRef] [Google Scholar]
  23. Narciso JO, Soares RO, Dos Santos Reis, Mallet J, Guimarães AÉ, de Oliveira Chaves MC, Barbosa-Filho JM, Maleck M. 2014. Burchellin: study of bioactivity against Aedes aegypti . Parasites and Vectors, 7, 172. [CrossRef] [Google Scholar]
  24. Newman DJ, Cragg GM. 2007. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3), 461–477. [CrossRef] [PubMed] [Google Scholar]
  25. Noriega P, Dacarro C. 2008. Aceite foliar de Ocotea quixos (Lam.) Kosterm.: actividad antimicrobiana y antifúngica. La Granja, Revista de Cencias de la Vida, 7(1), 3–8. [CrossRef] [Google Scholar]
  26. Obeng-Ofori D, Reichmuth C. 1997. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product coleoptera. International Journal of Pest Management, 43(1), 89–94. [Google Scholar]
  27. Oliveira Gomes E, Massayoshi Nunomura S, Marinotti O, Tadei WP. 2016. Synergistic potential of dillapiole combined with pyrethroids against mosquitoes. Vector Biology Journal, 1(3), 8–11. [Google Scholar]
  28. Park IK, Lee SG, Shin SC, Park JD, Ahn YJ. 2002. Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species. Journal of Agricultural and Food Chemistry, 50(7), 1866–1870. [CrossRef] [PubMed] [Google Scholar]
  29. Pavela R. 2016. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects: a review. Plant Protection Science, 52(4), 229–241. [CrossRef] [Google Scholar]
  30. Pavela R, Sedlák P. 2018. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris . Industrial Crops & Products, 113, 43–49. [CrossRef] [Google Scholar]
  31. Pavela R, Maggi F, Iannarelli R, Benelli G. 2019. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Tropica, 193(2019), 236–271. [CrossRef] [PubMed] [Google Scholar]
  32. Pohlit AM, Quinard ELJ, Nunomura SM, Tadei WP, Hidalgo A de F, Pinto AC da S, Santos AC da S, Morais EVM, Saraiva SKR, Ming RCG, Alecrim LC, Ferraz AM, Pedroso AB, Diniz AC da S, Finney EV, Gomes EK, Dias E de O, Souza HB, Oliveira KS, Don LCP, Queiroz LC, Henrique MMA, Santos MC, Lacerda Júnior M, Pinto O da S, Silva P de S, Gomes S, Graça YR. 2004. Screening of plants found in the State of Amazonas, Brazil for activity against Aedes aegypti larvae. Acta Amazonica, 34(1), 97–105. [Google Scholar]
  33. Radice M, Silva J, Correa C, Moya A, Escobar JA, Pérez Martínez A. 2016. Ocotea quixos essential oil: a systematic review about the ethno-medicinal uses, phytochemistry and biological activity. Conference: MOL2NET 2017, International Conference on Multidisciplinary Sciences, 3rd edition, 15 February–30 November 2017; Sciforum Electronic Conference SeriesVolume: Vol. 3, 2017. [Google Scholar]
  34. Radice M, Pietrantoni A, Guerrini A, Tacchini M, Sacchetti G, Chiurato M, Venturi G, Fortuna C. 2018. Inhibitory effect of Ocotea quixos (Lam.) Kosterm. and Piper aduncum L. essential oils from Ecuador on West Nile virus infection. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology, , DOI: 10.1080/11263504.2018.1478902. [Google Scholar]
  35. Rathy M, Sajith U, Harilal C. 2015. Plant diversity for mosquito control: a preliminary study. International Journal of Mosquito Research, 2(1), 29–33. [Google Scholar]
  36. Rolli E, Marieschi M, Maietti S, Sacchetti G, Bruni R. 2014. Comparative phytotoxicity of 25 essential oils on pre- and post-emergence development of Solanum lycopersicum L.: a multivariate approach. Industrial Crops and Products, 60, 280–290. [Google Scholar]
  37. Romi R, Proietti M, Di Luca M, Cristofaro M. 2006. Laboratory evaluation of the bioinsecticide Spinosad for mosquito control. Journal of the American Mosquito Control Association, 22(1), 93–96. [CrossRef] [PubMed] [Google Scholar]
  38. Sacchetti G, Medici A, Maietti S, Radice M, Muzzoli M, Manfredini S, Braccioli E, Bruni R. 2004. Composition and functional properties of the essential oil of Amazonian Basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. Journal of Agricultural and Food Chemistry, 52(11), 3486–3491. [CrossRef] [PubMed] [Google Scholar]
  39. Sacchetti G, Guerrini A, Noriega P, Bianchi A, Bruni R. 2006. Essential oil of wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) leaves from Amazonian Ecuador. Flavour and Fragrance Journal, 21(4), 674–676. [Google Scholar]
  40. Salleh WMNHW, Ahmad F. 2017. Phytochemistry and biological activities of the genus Ocotea (Lauraceae): a review on recent research results (2000–2016). Journal of Applied Pharmaceutical Science, 7(5), 204–218. [Google Scholar]
  41. Scalvenzi L, Yaguache B, Cabrera P, Guerrini A. 2016. Actividad antifúngica in vitro de aceites esenciales de Ocotea quixos Lam (Kosterm.) y Piper aduncum L. Bioagro, 28(1), 39–46. [Google Scholar]
  42. Scalvenzi L, Grandini A, Spagnoletti A, Tacchini M, Neill D, Ballesteros JL, Sacchetti G, Guerrini A. 2017. Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) essential oil from Amazonian Ecuador: A chemical characterization and bioactivity profile. Molecules, 22(7), 1–12. [Google Scholar]
  43. Sierra R, Campos F, Chamberlin J. 2002. Assessing biodiversity conservation priorities: ecosystem risk and representativeness in continental Ecuador. Landscape and Urban Planning, 59(2), 95–110. [Google Scholar]
  44. Silva WC, Martins JR, de Souza HE, Heinzen H, Cesio MV, Mato M, Albrecht F, de Azevedo JL, de Barros NM. 2009. Toxicity of Piper aduncum L. (Piperales: Piperaceae) from the Amazon forest for the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Veterinary Parasitology, 164(2–4), 267–274. [CrossRef] [PubMed] [Google Scholar]
  45. Tognolini M, Barocelli E, Ballabeni V, Bruni R, Bianchi A, Chiavarini M, Impicciatore M. 2006. Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Life Sciences, 78(13), 1419–1432. [CrossRef] [PubMed] [Google Scholar]
  46. Tunç I, Şahinkaya Ş. 1998. Sensitivity of two greenhouse pests to vapours of essential oils. Entomologia Experimentalis et Applicata, 86(2), 183–187. [Google Scholar]
  47. W.H.O. 1981. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Geneva: World Health Organization. [Google Scholar]
  48. W.H.O. 2006. Pesticides and their application for the control of vectors and pests of public health importance. Geneva: World Health Organization. [Google Scholar]
  49. W.H.O. 2016a. Media center, fact sheets, yellow fever. Geneva: World Health Organization. [Google Scholar]
  50. W.H.O. 2016b. Statement on the third meeting of the International Health Regulations (2005) (IHR(2005)). Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations. Retrieved November 30, 2017, from http://www.who.int/mediacentre/news/statements/2016/zika-third-ec/en/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.