Open Access
Volume 26, 2019
Article Number 20
Number of page(s) 9
Published online 03 April 2019
  1. Beytout J, George J, Malaval J, Garnier M, Beytout M, Baranton G, Ferquel E, Postic D. 2007. Lyme borreliosis incidence in two French departments: correlation with infection of Ixodes ricinus ticks by Borrelia burgdorferi sensu lato. Vector Borne and Zoonotic Diseases, 4, 507–517. [CrossRef] [Google Scholar]
  2. Black WC, Piesman J. 1994. Phylogeny of hard- and sof-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proceedings of the National Academy of Sciences of the USA, 91, 10034–10038. [CrossRef] [PubMed] [Google Scholar]
  3. Blazejak K, Janecek E, Strube C. 2017. A 10-year surveillance of Rickettsiales (Rickettsia spp. and Anaplasma phagocytophilum) in the city of Hanover, Germany, reveals Rickettsia spp. as emerging pathogens in ticks. Parasites & Vectors, 10, 588. [CrossRef] [PubMed] [Google Scholar]
  4. Bonnet S, Jouglin M, Malandrin L, Becker C, Agoulon A, L’Hostis M, Chauvin A. 2007. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology, 134, 197–207. [CrossRef] [PubMed] [Google Scholar]
  5. Bouvier G. 1965. Observations on the diseases of game and wild animals in 1963 and 1964. Schweizer Archiv für Tierheilkunde, 107, 634–647. [Google Scholar]
  6. Davoust B, Socolovschi C, Revelli P, Gibert P, Marié J-L, Raoult D, Parola P. 2012. Detection of Rickettsia helvetica in Ixodes ricinus ticks collected from Pyrenean chamois in France. Ticks and Tick-Borne Diseases, 3, 386–387. [Google Scholar]
  7. de la Fuente J, Estrada-Pena A, Venzal J, Kocan K, Sonenshine D. 2008. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Frontiers in Bioscience, 13, 6938–6946. [CrossRef] [Google Scholar]
  8. Ebani V, Cerri D, Fratini F, Ampola M, Andreani E. 2008. Seroprevalence of Anaplasma phagocytophilum in domestic and wild animals from central Italy. New Microbiologica, 31, 371–375. [Google Scholar]
  9. Estrada Pena A, Bouattour A, Camicas J-L, Walker AR. 2004. Ticks of domestic animals in the mediterranean region: a guide to identification of species. Houten, The Netherlands: University of Zaragoza. [Google Scholar]
  10. Fournier P-E, Dumler JS, Greub G, Zhang J, Wu Y, Raoult D. 2003. Gene sequence-based criteria for identification of new Rickettsia isolates and description of Rickettsia heilongjiangensis sp. nov. Journal of Clinical Microbiology, 41, 5456–5465. [CrossRef] [PubMed] [Google Scholar]
  11. Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C. 2000. Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematics, 31, 367–393. [Google Scholar]
  12. Gern L, Cadenas F, Burri C. 2008. Influence of some climatic factors on Ixodes ricinus ticks studied along altitudinal gardients in two geographic regions in Switzerland. International Journal of Medical Microbiology, 298, 55–59. [CrossRef] [Google Scholar]
  13. Gibert P. 2017. Surveillance sanitaire de la faune sauvage. Rueil Malmaison: Éditions du Point vétérinaire. [Google Scholar]
  14. Gray J, Dautel H, Estrada-Pena A, Kahl O, Lindgren E. 2009. Effects of climate change on ticks and tick-borne diseases in Europe. Interdisciplinary Perspective on Infectious Diseases, 2009, 593232. [CrossRef] [Google Scholar]
  15. Halos L, Bord S, Cotté V, Gasqui P, Abrial D, Barnouin J, Boulouis HJ, Vayssier-Taussat M, Vourc’h G. 2010. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Applied and Environmental Microbiology, 13, 4413–4420. [Google Scholar]
  16. Hamsikova Z, Kazimirova M, Harustiakova D, Mahrikova L, Slovak M, Berthova L, Kocianova E, Schnittger L. 2016. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasites & Vectors, 9, 292. [CrossRef] [PubMed] [Google Scholar]
  17. Hoby S, Robert N, Mathis A, Schmid N, Meli ML, Hofmann-Lehmann R, Lutz H, Deplazes P, Ryser-Degiorgis MP. 2007. Babesiosis in free-ranging chamois (Rupicapra r. rupicapra) from Switzerland. Veterinary Parasitology, 148, 341–345. [CrossRef] [PubMed] [Google Scholar]
  18. Hoby S, Mathis A, Doherr MG, Robert N, Ryser-Degiorgis MP. 2009. Babesia capreoli infections in alpine chamois (Rupicapra r. rupicapra), roe deer (Capreolus c. capreolus) and red deer (Cervus elaphus) from Switzerland. Journal of Wildlife Diseases, 45, 748–753. [CrossRef] [PubMed] [Google Scholar]
  19. Heyman P, Cochez C, Hofhuis A, van der Giessen J, Sprong H, Porter S, Losson B, Saegerman C, Donoso-Mantke O, Niedrig M, Papa A. 2010. A clear and present danger: tick-borne diseases in Europe. Expert Review of Anti-infectious Therapy, 8, 33–50. [CrossRef] [Google Scholar]
  20. Jouda F, Perret J-L, Gern L. 2004. Density of questing Ixodes ricinus nymphs and adults infected by Borrelia burgdorferi sensu lato in Switzerland: spatio-temporal pattern at a regional scale. Vector-Borne and Zoonotic Diseases, 4, 23–32. [CrossRef] [Google Scholar]
  21. Kiewra D, Kryza M, Szymanowski M. 2014. Influence of selected meteorological variables on the questing activity of Ixodes ricinus ticks in Lower Silesia, SW Poland. Journal of Vector Ecology, 39, 138–145. [CrossRef] [Google Scholar]
  22. Kourkgy C, Garel M, Appolinaire J, Loison A, Toïgo C. 2016. Onset of autumn shapes the timing of birth in Pyrenean chamois more than onset of spring. Journal of Animal Ecology, 85, 581–590. [CrossRef] [Google Scholar]
  23. Lillini E, Macri G, Proietti G, Scarpulla M. 2006. New findings on anaplasmosis caused by infection with Anaplasma phagocytophilum. Annals of the New York Academy of Sciences, 1081, 360–370. [CrossRef] [PubMed] [Google Scholar]
  24. Liz JS, Sumner WJ, Pfister K, Brossard M. 2002. PCR detection and serological evidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). Journal of Clinical Microbiology, 40, 892–897. [CrossRef] [PubMed] [Google Scholar]
  25. Lommano E, Bertaiola L, Dupasquier C, Gern L. 2012. Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Applied and Enivronmental Microbiology, 73, 4606–4612. [CrossRef] [Google Scholar]
  26. Mannelli A, Bertolotti L, Gern L, Gray J. 2012. Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiology Reviews, 36, 837–861. [CrossRef] [PubMed] [Google Scholar]
  27. Marconi RT, Garon CF. 1992. Development of polymerase chain reaction primer sets for diagnosis of Lyme disease and for specie-specific identification of Lyme disease isolates by 16S rRNA signature nucleotide analysis. Journal of Clinical Microbiology, 30, 2830–2834. [PubMed] [Google Scholar]
  28. Massung RF, Slater K, Owens JH, Nicholson WL, Mather TN, Solberg VB, Olson JG. 1998. Nested PCR assay for detection of Garnulocytic Ehrlichiae. Journal of Clinical Microbiology, 36, 1090–1095. [PubMed] [Google Scholar]
  29. Michel A, Mathis A, Ryser-Degiorgis MP. 2014. Babesia spp. in European wild ruminant species: parasite diversity and risk factors for infection. Veterinary Research, 45, 65. [CrossRef] [PubMed] [Google Scholar]
  30. Oeschslin CP, Heutschi D, Lenz N, Tischhauser W, Peter O, Rais O, Beuret CM, Stephen Leib L, Bankoul S, Ackermann-Gaumann R. 2017. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasites & Vectors, 558, 558. [Google Scholar]
  31. Ortuno A, Castella J, Marco I, Ruiz M, Lavin S. 2003. Prevalence of antibodies to Borrelia burgdorferi sensu lato in southern chamois (Rupicapra pyrenaica) in Spain. Journal of Veterinary Medicine, 50, 253–254. [CrossRef] [PubMed] [Google Scholar]
  32. Ostfeld R, Brunner J. 2015. Climate change and Ixodes tick-borne diseases of humans. Philosophical Transactions of the Royal Society B Biological Sciences, 370, 20140051. [CrossRef] [Google Scholar]
  33. Parola P, Raoult D. 2001. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clinical Infectious Diseases, 32, 897–928. [CrossRef] [Google Scholar]
  34. Parola P, Davoust B, Raoult D. 2005. Tick- and flea-borne rickettsial emerging zoonoses. Veterinary Research, 36, 469–492. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Parola P, Paddock C, Socolovschi C, Laruna M, Mediannikov O, Kernif T, Abdad MY, Stenos J, Bitam I, Fournier PE, Raoult D. 2013. Update on tick-borne rickettsioses around the world: a geographic approach. Clinical Microbiology Review, 26, 657–702. [CrossRef] [Google Scholar]
  36. Parola P, Roux V, Camicas J-L, Baradji I, Brouqui P, Raoult D. 2000. Detection of Ehrlichia in African ticks by polymerase chain reaction. Transactions of the Royal Society of Tropical Medicine and Hygiene, 94, 707–708. [CrossRef] [PubMed] [Google Scholar]
  37. Perez-Eid C. 2007. Les tiques – identification, biologie, importance medicale et vétérinaire. Paris: Lavoisier. [Google Scholar]
  38. Pintore M, Ceballos L, Lulini B, Tomassone L, Pautasso A, Corbellini D, Rizzo F, Mandola ML, Bardelli M, Peletto S, Acutis PL, Mannelli A, Casalone C. 2015. Detection of invasive Borrelia burgdorferi strains in North-Eastern Piedmont, Italy. Zoonoses and Public Health, 62, 365–374. [CrossRef] [PubMed] [Google Scholar]
  39. Regnery R, Spruill C, Plikaytis B. 1991. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. Journal of Bacteriology, 173, 1576–1589. [CrossRef] [PubMed] [Google Scholar]
  40. Reis C, Cote M, Paul R, Bonnet S. 2011. Questing ticks in suburban forest are infected by at least six tick-borne pathogens. Vector Borne and Zoonotic Diseases, 7, 907–916. [CrossRef] [Google Scholar]
  41. Richard Q. 2016. Hétérogénéité individuelle, variabilité temporelle et structure spatiale comme source de variation démographique chez les grand herbivores de montagne. PhD Thesis, Bourget du Lac, France: Université Savoie Mont Blanc. [Google Scholar]
  42. Richard Q, Toïgo C, Appolinaire J, Loison A, Garel M. 2017. From gestation to weaning: combining robust design and multi event models unveils cost of lactation in a large herbivore. Journal of Animal Ecology, 86, 1497–1509. [CrossRef] [Google Scholar]
  43. Schmid N, Deplazes P, Hoby S, Ryser-Degiorgis M-P, Edelhofer R, Mathis A. 2008. Babesia divergens-like organisms from free-ranging chamois (Rupicapra r. rupicapra) and roe deer (Capreolus c. capreolus) are distinct from B. divergens of cattle origin – an epidemiological and molecular genetic investigation. Veterinary Parasitology, 154, 14–20. [CrossRef] [PubMed] [Google Scholar]
  44. Stanczak J, Cieniuch S, Lass A, Biernat B, Racewicz M. 2015. Detection and quantification of Anaplasma phagocytophilum and Babesia spp. in Ixodes ricinus ticks from urban and rural environment, northern Poland, by real-time polymerase chain reaction. Experimental and Applied Acarology, 66, 63–81. [CrossRef] [Google Scholar]
  45. Stuen S, Granquist E, Silaghi C. 2013. Anaplasma phagocytophilum – a widespread multi-host pathogen with highly adaptive strategies. Frontier in Cellular and Infection Microbiology, 3, 31. [Google Scholar]
  46. Vandenesch A, Turbelin C, Couturier E, Arena C, Jaulhac B, Ferquel E, Choumet V, Saugeon C, Coffinieres E. 2014. Incidence and hospitalisation rates of Lyme borreliosis, France, 2004 to 2012. Eurosurveillance, 19, 34. [CrossRef] [Google Scholar]
  47. Wickel S. 2018. Ticks and tick-borne infections: complex ecology, agents, and host interactions. Veterinary Sciences, 5, 60. [Google Scholar]
  48. Woldehiwet Z. 2010. The natural history of Anaplasma phagocytophilum. Veterinary Parasitology, 167, 108–122. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.