Open Access
Research Article
Issue
Parasite
Volume 26, 2019
Article Number 2
Number of page(s) 12
DOI https://doi.org/10.1051/parasite/2019002
Published online 15 January 2019
  1. Andrews ES, Crain PR, Fu Y, Howe DK, Dobson SL. 2012. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types. PLoS Pathogens, 8(12), e1003075. [CrossRef] [PubMed] [Google Scholar]
  2. Arakeljan R, Kovtunov A, Bikov V, Shatalin V, Arakeljan E. 2008. Epidemiologic-episootologic features of three-member system of dirofilariasis (dog-mosquito-people) on the territory of Astrakhan region. Siberian Medical Journal, 7, 13–18 (in Russian). [Google Scholar]
  3. Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O. 2011. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Molecular Biology and Evolution, 28, 2761–2772. [CrossRef] [PubMed] [Google Scholar]
  4. Barashkova SV. 2011. Case of dirofilariasis in adolescent in Saint-Petersburg: Clinical and morphological characteristic. Journal Infectology, 3, 108–110 (in Russian). [Google Scholar]
  5. Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z. 2013. Wolbachia invades Anopheles stephensis populations and induces refractoriness to Plasmodium infection. Science, 340(6133), 748–751. [Google Scholar]
  6. Biskin Z, Duziu O, Yildirim A, Inci A. 2010. The molecular diagnosis of Dirofilaria immitis in vector mosquitoes in Felahiye district of Kayseri. Turkiye Parazitoloji Dergisi, 34(3), 200–205. [CrossRef] [Google Scholar]
  7. Bockova E, Rudolf I, Kocisova A, Betasova L, Venclikova K, Mendel J, Hubalek Z. 2013. Dirofilaria repens microfilariae in Aedes vexans mosquitoes in Slovakia. Parasitology Research, 112(10), 3465–3470. [CrossRef] [PubMed] [Google Scholar]
  8. Braig HR, Zhou W, Dobson SL, O’Neill SL. 1998. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. Journal of Bacteriology, 180(9), 2373–2378. [PubMed] [Google Scholar]
  9. Bravo-Barriga D, Parreira R, Almeida APG, Calado M, Blanco-Ciudad J, Serrano-Aguilera FJ, Perez-Martin JE, Sanchez-Peinado J, Pinto J, Reina D, Frontera E. 2016. Culex pipiens as a potential vector for transmission of Dirofilaria immitis and other unclassified Filarioidea in Southwest Spain. Veterinary Parasitology, 223, 173–180. [CrossRef] [PubMed] [Google Scholar]
  10. Byakova OV, Maslennikova OV, Ermolina SA. 2014. Dirofilariosis dog in the Kirov region. Basic Research, 11, 1297–1300 (in Russian). [Google Scholar]
  11. Cabanova V, Miterpakova M, Valentova D, Blazejova H, Rudolf I, Stloukal E, Hurnikova Z, Dzidova M. 2018. Urbanization impact on mosquito community and the transmission potential of filarial infection in Central Europe. Parasites & Vectors, 11(1), 261. [CrossRef] [PubMed] [Google Scholar]
  12. Cancrini G, Frangipane di Regalbono A, Ricci I, Tessarin C, Gabrielli S, Pietrobelli M. 2003a. Aedes albopictus is a natural vector of Dirofilaria immitis in Italy. Veterinary Parasitology, 118(3–4), 195–202. [Google Scholar]
  13. Cancrini G, Romi R, Gabrielli S, Toma L, Di Paolo M, Scaramozzino P. 2003b. First finding of Dirofilaria repens in a natural population of Aedes albopictus. Medical and Veterinary Entomology, 17(4), 448–451. [Google Scholar]
  14. Cancrini G, Magi M, Gabrielli S, Arispici M, Tolari F, Dell’Omodarme M, Prati MC. 2006. Natural vectors of dirofilariasis in rural and urban areas of the Tuscan region, central Italy. Journal of Medical Entomology, 43(3), 574–579. [CrossRef] [PubMed] [Google Scholar]
  15. Cancrini G, Gabrielli S. 2007. Vectors of Dirofilaria nematodes: biology, behaviour and host/parasite relationships, in Dirofilaria immitis and D. repens in dog and cat and human infections, Genchi C, Rinaldi L, Cringoli G, Editors. Veterinary Parasitology and Parasitic Diseases, Department of Pathology and Animal Health, Faculty of Veterinary Medicine, University of Naples Federico II: Napoli, NA, Italy. p. 48–58. ISBN 9788889132142. [Google Scholar]
  16. Cancrini G, Scaramozzino P, Gabrielli S, Di Paolo M, Toma L, Romi R. 2007. Aedes albopictus and Culex pipens implicated as natural vectors of Dirofilaria repens in central Italy. Journal of Medical Entomology, 44(6), 1064–1066. [PubMed] [Google Scholar]
  17. Caragata EP, Pais FS, Baton LA, Silva JBL, Sorgine MHF, Moreira LA. 2017. The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection. BMC Genomics, 18, 6. [CrossRef] [PubMed] [Google Scholar]
  18. Castillo JC, Reynolds SE, Eleftherianos I. 2011. Insect immune responses to nematode parasites. Trends in Parasitology, 27(12), 537–547. [CrossRef] [PubMed] [Google Scholar]
  19. Cotton JA, Bennuru S, Grote A, Harsha B, Tracey A, Beech R, Dovie SR, Dunn M, Hotopp JC, Holroyd N, Kikuchi T, Lambert O, Mhashilkar A, Mutowo P, Nursimulu N, Ribeiro JM, Rogers MB, Stanley E, Swapna LS, Tsai IJ, Unnasch TR, Voronin D, Parkinson J, Nutman TB, Ghedin E, Berriman M, Lustigman S. 2016. The genome of Onchocerca volvulus, agent of river blindness. Nature Microbiology, 2, 16216. [CrossRef] [PubMed] [Google Scholar]
  20. Cowling DW, Gardner IA, Johnson WO. 1999. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Preventive Veterinary Medicine, 39(3), 211–225. [CrossRef] [PubMed] [Google Scholar]
  21. De Carvalho GA, Ramos RAN, Trindade Maia R, de Andrade CFS, Alves CL. 2018. Melanization of Dirofilaria immitis larvae in different culicid species. Journal of Arthropod-Borne Diseases, 12(1), 94–99. [PubMed] [Google Scholar]
  22. de Pinho Mixao V, Mendes AM, Mauricio IL, Calado MM, Novo MT, Bello S, Almeida AP. 2016. Molecular detection of Wolbachia pipientis in natural populations of mosquito vectors of Dirofilaria immitis from continental Portugal: first detection in Culex theileri. Medical and Veterinary Entomology, 30, 301–309. [CrossRef] [PubMed] [Google Scholar]
  23. Dyab AK, Galal LA, Mahmoud AE, Mokhtar Y. 2016. Finding Wolbachia in Filarial larvae and Culicidae mosquitoes in Upper Egypt governorate. Korean Journal of Parasitology, 54(3), 265–272. [CrossRef] [Google Scholar]
  24. Ermakova L, Nagorny S, Krivorotova E, Pshenichnaya N, Matina O. 2014. Dirofilaria repens in the Russian Federation: current epidemiology, diagnosis, and treatment from a federal reference center perspective. International Journal of Infectious Diseases, 23, 47–52. [CrossRef] [Google Scholar]
  25. Ferreira CA, de Pinho MV, Novo MT, Calado MM, Gonçalves LA, Belo SM, de Almeida AP. 2015. First molecular identification of mosquito vectors of Dirofilaria immitis in continental Portugal. Parasites & Vectors, 8, 139. DOI: 10.1186/s13071-015-0760-2. [CrossRef] [PubMed] [Google Scholar]
  26. Ganushkina LA, Rakova VM, Ivanova IB, Supriaga VG, Sergiev VP. 2014. Entomological monitoring of an area to assess Dirofilaria transmission risk. Meditsinskaia Parazitologiia i Parazitarnye Bolezni (Mosk), 3, 9–12. [Google Scholar]
  27. Genchi C, Rinaldi L, Mortarino M, Genchi M, Cringoli G. 2009. Climate and Dirofilaria infection in Europe. Veterinary Parasitology, 163(4), 286–292. [CrossRef] [PubMed] [Google Scholar]
  28. Giangaspero A, Marangi M, Latrofa MS, Martinelli D, Traversa D, Otranto D, Genchi C. 2013. Evidences of increasing risk of dirofilarioses in southern Italy. Parasitology Research, 112(3), 1357–1361. [CrossRef] [PubMed] [Google Scholar]
  29. Gouveia M. 2007. Susceptibility of Mosquito Vectors to Dirofilaria immitis on Madeira Island, Portugal. Tese Doutoramenteo Universidade da Madeira. Funchal, Portugal: Universidade da Madeira. 113 p. hdl.handle.net/10400.13/27. [Google Scholar]
  30. Grote A, Voronin D, Ding T, Twaddle A, Unnasch TR, Lustigman S, Ghedin E. 2017. Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq. PLoS Neglected Tropical Diseases, 11(3), e0005357. [CrossRef] [PubMed] [Google Scholar]
  31. Gutsevich AV, Monchadskii AS, Shtakelberg AA. 1970. Fauna of the USSR. Diptera. Mosquitoes. Nauka: Leningrad (in Russian). [Google Scholar]
  32. Hertig M, Wolbach SB. 1924. Studies on rickettsia-like micro-organisms in insects. Journal of Medical Research, 44(3), 329–374. [Google Scholar]
  33. Kambris Z, Cook PE, Phuc HK, Sinkins SP. 2009. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science (New York, NY), 326(5949), 134–136. [CrossRef] [PubMed] [Google Scholar]
  34. Kartman L. 1953. Factors influencing infection of the mosquito with Dirofilaria immitis (Leidy, 1856). Experimental Parasitology, 2(1), 27–78. [Google Scholar]
  35. Krivorotova EY. 2016. Xenomonitoring of dirofilariasis in the south and north-west of the Russian Federation. Parazitologiia, 50(5), 357–364 (in Russian). [PubMed] [Google Scholar]
  36. Kronefeld M, Kampen H, Sassnau R, Werner D. 2014. Molecular detection of Dirofilaria immitis, Dirofilaria repens and Setaria tundra in mosquitoes from Germany. Parasites & Vectors, 7(1), 30. [CrossRef] [PubMed] [Google Scholar]
  37. Kurucz K, Kepner A, Krtinic B, Zana B, Foldes F, Földes F, Bányai K, Oldal M, Jakab F, Kemenesi G. 2016. First molecular identification of Dirofilaria spp. (Onchocercidae) in mosquitoes from Serbia. Parasitology Research, 115(8), 3257–3260. [CrossRef] [PubMed] [Google Scholar]
  38. Latrofa MS, Dantas-Torres F, Annoscia G, Genchi M, Traversa D, Otranto D. 2012. A duplex real-time polymerase chain reaction assay for the detection of and differentiation between Dirofilaria immitis and Dirofilaria repens in dogs and mosquitoes. Veterinary Parasitology, 185(2–4), 181–185. [CrossRef] [PubMed] [Google Scholar]
  39. Li J, Wang N, Liu Y, Qiu S. 2018. Proteomics of Nasonia vitripennis and the effects of native Wolbachia infection on N. vitripennis. PeerJ, 6, e4905. [CrossRef] [PubMed] [Google Scholar]
  40. Lu P, Bian G, Pan X, Xi Z. 2012. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Neglected Tropical Diseases, 6(7), e1754. [CrossRef] [PubMed] [Google Scholar]
  41. Masetti A, Rivasi F, Bellini R. 2008. Mosquito-based survey for the detection of flaviviruses and filarial nematodes in Aedes albopictus and other anthropophilic mosquitoes collected in northern Italy. New Microbiolica, 31(4), 457–465. [Google Scholar]
  42. Mckay T, Bianco T, Rhodes L, Barnett S. 2013. Prevalence of Dirofilaria immitis (Nematoda: Filarioidea) in mosquitoes From Northeast Arkansas, the United States. Journal of Medical Entomology, 50(4), 871–878. [CrossRef] [PubMed] [Google Scholar]
  43. Montarsi F, Ciocchetta S, Devine G, Ravagnan S, Mutinelli F, Frangipane di Regalbono A, Otranto D, Capelli G. 2015. Development of Dirofilaria immitis within the mosquito Aedes (Finlaya) koreicus, a new invasive species for Europe. Parasites & Vectors, 8(1), 177. [CrossRef] [PubMed] [Google Scholar]
  44. Moodley K, Govin CN, Peer AKC, Westhuizen MVD, Parbhoo D, Ming Sun L, du Plessis DC, Frean JA. 2015. First detection of human dirofilariasis in south Africa. Infectious Disease Reports, 7(1), 5726. [CrossRef] [PubMed] [Google Scholar]
  45. Morchón R, Bargues MD, Latorre JM, Melero-Alcíbar R, Pou-Barreto C, Mas-Coma S, Simon F. 2007. Haplotype H1 of Culex pipiens implicated as a natural vector of Dirofilaria immitis in an endemic area of western Spain. Vector Borne and Zoonotic Disease, 7(4), 653–658. [CrossRef] [Google Scholar]
  46. Murata K, Yanai T, Agatsuma T, Uni S. 2003. Dirofilaria immitis Infection of a Snow Leopard (Uncia uncia) in a Japanese Zoo with mitochondrial DNA analysis. Journal of Veterinary Medical Science, 65(8), 945–947. [CrossRef] [Google Scholar]
  47. Nicolescu G, Linton YM, Vladimirescu A, Howard TM, Harbach RE. 2004. Mosquitoes of the Anopheles maculipennis group (Diptera: Culicidae) in Romania, with the discovery and formal recognition of new species based on molecular and morphological evidence. Bulletin of Entomological Research, 94(6), 525–535. [CrossRef] [PubMed] [Google Scholar]
  48. Pan X, Zhou G, Bian G, Lu P, Raikhel AS, Xi Z. 2012. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences, 109(1), E23–E31. [CrossRef] [Google Scholar]
  49. Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P, Liang X, Zhang F, Raikhel AS, Xi Z. 2018. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME Journal, 12(1), 277–288. [CrossRef] [Google Scholar]
  50. Paras KL, O’Brien VA, Reiskind MH. 2014. Comparison of the vector potential of different mosquito species for the transmission of heartworm, Dirofilaria immitis, in rural and urban areas in and surrounding Stillwater, Oklahoma, U.S.A. Medical and Veterinary Entomology, 28(Suppl 1), 60–67. [Google Scholar]
  51. Ricci I, Cancrini G, Gabrielli S, Damelio S, Favia G. 2002. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): Large polymerase chain reaction survey and new identifications. Journal of Medical Entomology, 39, 562–567. [CrossRef] [PubMed] [Google Scholar]
  52. Rudolf I, Šebesta O, Mendel J, Betášová L, Bocková E, Jedličková P, Venclíková K, Blažejová H, Šikutová S, Hubálek Z. 2014. Zoonotic Dirofilaria repens (Nematoda: Filarioidea) in Aedes vexans mosquitoes, Czech Republic. Parasitology Research, 113, 4663–4667. [CrossRef] [PubMed] [Google Scholar]
  53. Ryabova T, Yunicheva Y, Markovich N, Ganushkina L, Orabei V, Sergiev V. 2005. Detection of Aedes (Stegomyia) aegypti L. mosquitoes in Sochi. Meditsinskaia parazitologiia i parazitarnye bolezni, 3, 3–5 (in Russian). [Google Scholar]
  54. Sergiev VP, Supriaga VG, Bronshteĭn AM, Ganushkina LA, Rakova VM, Morozov EN, Fedianina LV, Frolova AA, Morozova LF, Ivanova IB, Darchenkova NN, Zhukova LA. 2014. Results of studies of human dirofilariasis in Russia. Meditsinskaia parazitologiia i parazitarnye bolezni, 3, 3–9 (in Russian). [Google Scholar]
  55. Shaikevich E. 2007. PCR-RFLP of the COI gene reliably differentiates Cx. pipiens, Cx. pipiens f. molestus and Cx. torrentium of the Pipiens Complex. European Mosquito Bulletin, 23, 25–30. [Google Scholar]
  56. Shaikevich E, Vinogradova E, Bouattour A, Almeida APG. 2016. Genetic diversity of Culex pipiens mosquitoes in distinct populations from Europe. Contribution of Cx. quinquefasciatus in Mediterranean populations. Parasites & Vectors, 9(1), 47. [CrossRef] [PubMed] [Google Scholar]
  57. Sulaiman I, Towson H. 1980. The genetic basis of susceptibility of infection with Dirofilaria immitis in Aedes aegypti. Annals of Tropical Medicine and Parasitology, 74, 635–646. [CrossRef] [PubMed] [Google Scholar]
  58. Sulesco T, von Thien H, Toderas L, Toderas I, Lühken R, Tannich E. 2016. Circulation of Dirofilaria immitis in Moldova. Parasites & Vectors, 9(1), 627. [CrossRef] [PubMed] [Google Scholar]
  59. Sulesco T, von Thien H, Toderas L, Toderas I, Lühken R, Tannich E. 2016. Detection of Dirofilaria repens and Dirofilaria immitis DNA in mosquitoes from Belarus. Parasitology Research, 115, 3535–3541. [CrossRef] [PubMed] [Google Scholar]
  60. Tarello W. 2011. Clinical aspects of dermatitis associated with Dirofilaria repens in pets: a review of 100 canine and 31 feline cases (1990–2010) and a report of a new clinic case imported from Italy to Dubai. Journal of Parasitology Research. [PubMed] [Google Scholar]
  61. Taylor MJ, Voronin D, Johnston KL, Ford L. 2013. Wolbachia filarial interactions. Cellular Microbiology, 15(4), 520–526. [CrossRef] [PubMed] [Google Scholar]
  62. Tiawsirisup S, Nithiuthai S. 2006. Vector competence of Aedes aegypti (L.) and Culex quinquefasciatus (Say) for Dirofilaria immitis (Leidy). Southeast Asian Journal of Tropical Medicine and Public Health, 37(suppl 3), 110–114. [Google Scholar]
  63. Tumolskaya NI, Pozio E, Rakova VM, Supriaga VG, Sergiev VP, Morozov EN, Morozova LF, Rezza G, Litvinov SK. 2016. Dirofilaria immitis in a child from the Russia Federation. Parasite, 23, 37. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  64. Vakalis N, Spanakos G, Patsoula E, Vamvakopoulos NC. 1999. Improved detection of Dirofilaria repens DNA by direct polymerase chain reaction. Parasitology International, 48, 145–150. [CrossRef] [PubMed] [Google Scholar]
  65. Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nature Reviews. Microbiology, 6, 741–751. [CrossRef] [PubMed] [Google Scholar]
  66. Wilkerson RC, Linton Y-M, Fonseca DM, Schultz TR, Price DC, Strickman DA. 2015. Making mosquito taxonomy useful: a stable classification of Tribe Aedini that balances utility with current knowledge of evolutionary relationships. PLoS One, 10(7), e0133602. [CrossRef] [PubMed] [Google Scholar]
  67. Wright JD, Barr AR. 1980. The ultrastructure and symbiotic relationships of Wolbachia of mosquitoes of the Aedes scutellaris group. Journal of Ultrastructure Research, 72, 52–64. [CrossRef] [PubMed] [Google Scholar]
  68. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA. 2004. Phylogenomics of the 235 reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biology, 2(3), e69. [CrossRef] [PubMed] [Google Scholar]
  69. Yildirim A, Inci A, Duzlu O, Biskin Z, Ica A, Sahin I. 2011. Aedes vexans and Culex pipiens as the potential vectors of Dirofilaria immitis in Central Turkey. Veterinary Parasitology, 178(1–2), 143–147. [CrossRef] [PubMed] [Google Scholar]
  70. Zhou W, Rousset F, O’Neil S. 1998. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society B: Biological Sciences, 265(1395), 509–515. [CrossRef] [Google Scholar]
  71. Zittra C, Kocziha Z, Pinnyei S, Harl J, Kieser K, Laciny A, Eigner B, Silbermayr K, Duscher GG, Fok E, Fuehrer HP. 2015. Screening blood-fed mosquitoes for the diagnosis of filarioid helminthes and avian malaria. Parasistes & Vectors, 8, 16. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.