Open Access
Volume 26, 2019
Article Number 12
Number of page(s) 11
Published online 06 March 2019
  1. Al-Jahdali MO. 2012. Infrapopulations of Procamallanus elatensis Fusco & Overstreet, 1979 (Nematoda: Camallanidae) in the rabbitfish Siganus rivulatus (Teleostei, Siganidae) from the Saudi coast of the Red Sea. Journal of Helminthology, 86, 378–385. [CrossRef] [PubMed] [Google Scholar]
  2. Al-Jahdali MO. 2012. Infrapopulations of Gyliauchen volubilis Nagaty, 1956 (Trematoda: Gyliauchenidae) in the rabbitfish Siganus rivulatus (Teleostei: Siganidae) from the Saudi coast of the Red Sea. Parasite, 19, 227–238. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Al-Jahdali MO, Hassanine El-Said RM. 2012. The life cycle of Gyliauchen volubilis Nagaty, 1956 (Digenea: Gyliauchenidae) from the Red Sea. Journal of Helminthology, 86, 165–172. [CrossRef] [PubMed] [Google Scholar]
  4. Al-Khatani AM. 2009. Accumulation of heavy metals in Tilapia fish (Oreochromis niloticus) from Al-Khadoud Spring, Al-Hassa, Saudi Arabia. American Journal of Applied Sciences, 6, 2024–2029. [CrossRef] [Google Scholar]
  5. Amin O. 2013. Classification of the Acanthocephala. Folia Parasitologica, 60, 273–305. [CrossRef] [PubMed] [Google Scholar]
  6. Amini Z, Pazooki J, Abtahi B, Shokri MR. 2013. Bioaccumulation of Zn and Cu in Chasar bathybius (Gobiidae) tissue and its nematode parasite Dichelyne minutus, southeast of the Caspian Sea. Indian Journal of Geo-Marine Sciences, 42, 196–200. [Google Scholar]
  7. Baruš V, Jarkovsky J, Prokeš M. 2007. Philometra ovata (Nematoda: Philometroidea): A potential sentinel species of heavy metal accumulation. Parasitology Research, 100, 929. [CrossRef] [PubMed] [Google Scholar]
  8. Bayoumy EM, Osman HAM, El-Bana LF, Hassanain MA. 2008. Monogenean parasites as bioindicators for heavy metals status in some Egyptian Red Sea fishes. Global Veterinaria, 2, 117–122. [Google Scholar]
  9. Buckley JT, Roch M, McCarter JA, Rendell CA, Matheson AT. 1992. Chronic exposure of Coho salmon to sublethal concentration of copper. Effect on growth, on accumulation out distribution of copper and on copper tolerance. Comparative Biochemistry and Physiology, 72C, 15–19. [Google Scholar]
  10. Campbell KR. 1994. Concentrations of heavy metals associated with urban runoff in fish living in stormwater treatment ponds. Archives of Environmental Contamination and Toxicology, 27, 352–356. [Google Scholar]
  11. Canli M, Ay O, Kalay M. 1998. Levels of heavy metals (Cd, Pb, Cu, and Ni) in tissue of Cyprinus Carpio, Barbus Capito and Chondrostoma regium from the Seyhan River. Turkish Journal of Zoology, 22, 149–157. [Google Scholar]
  12. Dauvalter VA. 1998. Heavy metals in the bottom sediments of the Inari-Pasvik lake-river system. Water Resources, 25, 451–457. [Google Scholar]
  13. De Buron I, James E, Riggs-Gelasco P, Ringwood AH, Rolando E, Richardson D. 2009. Overviewof the status of heavymetal accumulation by helminthes with a note on the use of in vitro culture of adult acanthocephalans to study the mechanisms of bioaccumulation. Neotropical Helminthology, 3, 101–110. [Google Scholar]
  14. Demirezen D, Uruc K. 2006. Comparative study of trace elements in certain fish, meat and meat products. Meat Science, 74, 255–260. [CrossRef] [PubMed] [Google Scholar]
  15. Diamant A. 1989. Ecology of the acanthocephalan Sclerocollum rubrimaris Schmidt and Paperna, 1978 (Rhadinorhynchidae: Gorgorhynchinae) from wild populations of rabbitfish (genus Siganus) in the northern Red Sea. Journal of Fish Biology, 34, 387–397. [Google Scholar]
  16. Dural M, Lugal Göksu MZ, Özak AA, Derici B. 2006. Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L, 1758, Sparus aurata L, 1758 and Mugil cephalus L, 1758 from the ÇamlIk lagoon of the eastern cost of Mediterranean (Turkey). Environmental Monitoring and Assessment, 118, 65–74. [Google Scholar]
  17. Fusco AC, Overstreet RM. 1979. Two camallanid nematodes from Red Sea fishes including Procamallanus elatensis sp. nov. from siganids. Journal of Natural History, 13, 35–40. [CrossRef] [Google Scholar]
  18. Goater TM, Goater CP, Esch GW. 2013. Parasitism: the diversity and ecology of animal parasites. Cambridge: Cambridge University Press. p. 510. [Google Scholar]
  19. Grahl K. 1990. Erkennung von Schadstoffeinflussen auf die Gesundheit von Fischen mittels Gallendiagnostik, in DVG/Fachgruppe. Fischkrankheiten: Tagung der Fachgruppe Fischkrankheiten, Schmiedefeld/Thüringen. p. 240–243. Germany. [Google Scholar]
  20. Gurunadha Rao VVS, Jain CK, Prakash BA, Kumar KM. 2008. Heavy metal speciation study of sediments in Hussainsagar Lake, Greater Hyderabad, India, in Proceedings of Taal 2007: The 12th World Lake Conference, 2098–2104. [Google Scholar]
  21. Hassan AA, Moharram S, El Helaly H. 2018. Role of parasitic helminths in bioremediating some heavy metal accumulation in the tissues of Lethrinus mahsena. Turkish Journal of Fisheries and Aquatic Sciences, 18, 435–443. [Google Scholar]
  22. Hassan AH, Al-Zanbagi NA, Al-Nabati EA. 2016. Impact of nematode helminthes on metal concentrations in the muscles of Koshar fish, Epinephelus summana, in Jeddah, Saudi Arabia. Journal of Basic & Applied Zoology, 74, 56–61. [CrossRef] [Google Scholar]
  23. Hassanine RM, Al-Hasawi ZM, Hariri MS, Touliabah HEl-S. 2018. Sclerocollum saudii Al-Jahdali, 2010 (Acanthocephala: Cavisomidae) as a sentinel for heavy-metal pollution in the Red Sea. Journal of Helminthology. (in press). [Google Scholar]
  24. Hassanine RM, Al-Jahdali MO. 2008. Intraspecific density-dependent effects on growth and fecundity of Diplosentis nudus (Harada, 1938) Pichelin et Cribb, 2001 (Acanthocephala: Cavisomidae). Acta Parasitologica, 53, 289–295. [Google Scholar]
  25. Heath AG. 1987. Water pollution and fish physiology. Florida, USA: CRC Press. p. 384. [Google Scholar]
  26. Heath AG. 1990. Water pollution and fish physiology. UK: CRC Press (Taylor & Francis group). p. 254. [Google Scholar]
  27. Hofer R, Lackner R. 1995. Fischtoxikologie–Theorie und Praxis. Jena, Germany: Fischer Verlag. p. 164. [Google Scholar]
  28. Jankovská I, Miholová D, Lukešová D, Kalous L, Válek P, Romočuský Š, Vadlejch J, Petrtýl M, Langrová I, Čadková Z. 2012. Concentrations of Zn, Mn, Cu and Cd in different tissues of perch (Perca fluviatilis) and in perch intestinal parasite (Acanthocephalus lucii) from the stream near Prague (Czech Republic). Environmental Research, 112, 83–85. [CrossRef] [PubMed] [Google Scholar]
  29. Jirsa F, Leodolter-Dvorak M, Krachler R, Frank C. 2008. Heavy metals in the nase, Chondrostoma nasus (L. 1758), and its intestinal parasite Caryophyllaeus laticeps (Pallas 1781) from Austrian Rivers: Bioindicative aspects. Archives of Environmental Contamination and Toxicology, 55, 619–626. [CrossRef] [PubMed] [Google Scholar]
  30. Jordi T, Hichem K, Catarina E, Lassad N, Jordi M. 2014. Total mercury and selenium concentrations in Sarpa salpa and Balistes capriscus and in their respective Digenean endoparasites Robphildollfusium fractum and Neoapocreadium chabaudi from Tunisia. Acta Parasitologica, 59, 580–585. [PubMed] [Google Scholar]
  31. Kelle HI, Ngbede EO, Oguezi VU, Ibekwe FC. 2015. Determination of heavy metals in fish (Clarias gariepinus) organs from Asaba Major Markets, Delta State, Nigeria. American Chemical Science Journal, 5, 135–147. [CrossRef] [Google Scholar]
  32. Kenšova R, Čelehovska O, Doubravova J, Svobodova Z. 2010. Concentration of metals in tissues of fish from the Vestonice Reservoir. Acta Veterinaria Brno, 79, 335–345. [CrossRef] [Google Scholar]
  33. Khaleghzadeh-Ahangar H, Malek M, McKenzie K. 2011. The parasitic nematodes Hysterothylacium sp. type MB larvae as bioindicators of lead and cadmium: a comparative study of parasite and host tissues. Parasitology, 138, 1400–1405. [CrossRef] [PubMed] [Google Scholar]
  34. Luorna SN. 1990. Processes affecting metal concentrations in estuarine and coastal marine sediments, in Heavy metals in the marine environment, Furness RW, Rainbow PS, Editors. CRC Press (Taylor & Francis group): Florida, USA. p. 1–66. [Google Scholar]
  35. Mazhar R, Shazili NA, Harrison FS. 2014. Comparative study of the metal accumulation in Hysterothalycium reliquens (nematode) and Paraphilometroides nemipteri (nematode) as compared with their doubly infected host, Nemipterus peronii (Notched threadfin bream). Parasitology Research, 113, 3737–3743. [CrossRef] [PubMed] [Google Scholar]
  36. Mehdi N, Mahdi F. 2015. Helminthic parasites as heavy metal bioindicators in aquatic ecosystems. Medical Laboratory Journal, 9, 26–32. [CrossRef] [Google Scholar]
  37. Merian E. 2004. Elements and their compounds in the environment. Occurrence, analysis and biological relevance. Wiley: Weinheim, Germany. [CrossRef] [Google Scholar]
  38. Miller PA, Munkittrick KR, Dixon DG. 1992. Relationship between concentrations of copper and zinc in water, sediment, benthic invertebrates and tissues of white sucker (Catastomus commersoni) at metal-contaminated sites. Canadian Journal of Fisheries and Aquatic Sciences, 49, 978–984. [CrossRef] [Google Scholar]
  39. Nachev M, Schertzinger G, Sures B. 2013. Comparison of the metal accumulation capacity between the acanthocephalan Pomphorhynchus laevis and larval nematodes of the genus Eustrongylides sp. infecting barbel (Barbus barbus). Parasites & Vectors, 6, 21. [CrossRef] [PubMed] [Google Scholar]
  40. Nachev M, Sures B. 2016. Environmental Parasitology: parasites as accumulation bioindicators in the marine environment. Journal of Sea Research, 113, 45–50. [Google Scholar]
  41. Nagaty HF. 1956. Trematodes of fishes from the Red Sea. Part 7. On two gyliauchenids and three allocreadiids, including four new species. Journal of Parasitology, 42, 523–527. [CrossRef] [Google Scholar]
  42. Najm M, Fakhar M. 2015. Helminthic parasites as heavy metal bioindicators in aquatic ecosystems. Medical Laboratory Journal, 9, 26–32. [CrossRef] [Google Scholar]
  43. Oregioni B, Aston SR. 1984. The determination of selected trace metals in marine sediments by flameless/flame atomic absorption spectrophotometry. IAEA Monaco Laboratory: Monaco. Internal Report. [Google Scholar]
  44. Pascual S, Abollo E. 2003. Accumulation of heavy metals in the whaleworm Anisakis simplex s.l. (Nematoda: Anisakidae). Journal of the Marine Biological Association of the United Kingdom, 83, 905–906. [CrossRef] [Google Scholar]
  45. Poulin R. 2006. Evolutionary ecology of parasites. 2nd Edn. Princeton, NJ: Princeton University Press. p. 360. [Google Scholar]
  46. Roesijadi G, Robinson WE. 1994. Metal regulation in aquatic animals: mechanism of uptake, accumulation and release, in Aquatic toxicology (molecular, biochemical and cellular perspectives), Malins DC, Ostrander GK, Editors. Lewis Publishers: London, UK. p. 385–420. [Google Scholar]
  47. Sasal P, Jobet E, Faliex E, Morand S. 2000. Sexual competition in an acanthocephalan parasite of fish. Parasitology, 120, 65–69. [CrossRef] [PubMed] [Google Scholar]
  48. Schmidt GD, Paperna I. 1978. Sclerocollum rubrimaris gen. et sp. n. (Rhadinorhynchidae: Gorgorhynchinae), and other Acanthocephala of marine fishes from Israel. Journal of Parasitology, 64, 846–850. [CrossRef] [Google Scholar]
  49. Shahat MA, Amer OSO, AbdAllah AT, Abdelsater N, Moustafa MA. 2011. The distribution of certain heavy metals between intestinal parasites and their fish hosts in the River Nile at Assuit Province, Egypt. Egyptian Journal of Hospital Medicine, 43, 241–257. [Google Scholar]
  50. Sures B. 2002. Competition for minerals between Acanthocephalus lucii and its definitive host perch (Perca fluviatilis). International Journal of Parasitology, 32, 1117–1122. [CrossRef] [Google Scholar]
  51. Sures B. 2003. Accumulation of heavy metals by intestinal helminthes in fish an overview and perspective. Parasitology, 126(Suppl), 553–560. [Google Scholar]
  52. Sures B. 2004. Environmental parasitology: Relevancy of parasites in monitoring environmental pollution. Trends in Parasitology, 20, 170–177. [CrossRef] [PubMed] [Google Scholar]
  53. Sures B, Nachev M, Selbach C, David J, Marcogliese DJ. 2017. Parasite responses to pollution: What we know and where we go in ‘Environmental Parasitology’. Parasites & Vectors, 10, 65. [CrossRef] [PubMed] [Google Scholar]
  54. Sures B, Siddall R. 1999. Pomphorhynchus laevis: The intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Experimental Parasitology, 93, 66–72. [CrossRef] [PubMed] [Google Scholar]
  55. Sures B, Siddall R, Taraschewski H. 1999. Parasites as accumulation indicators of heavy metal pollution. Parasitology Today, 15, 16–21. [CrossRef] [Google Scholar]
  56. Tekin-Ozan S, Kir İ. 2008. Concentrations of some heavy metals in tench (Tinca tinca L., 1758), its endoparasite (Ligula intestinalis L., 1758), sediment and water in Beyşehir Lake, Turkey. Polish Journal of Environmental Studies, 17, 597–603. [Google Scholar]
  57. Tenora F, Barus V, Kracmar S, Dvořáček J. 2000. Concentrations of some heavy metals in Ligula intestinalis plerocercoids (Cestoda) and Philometra ovate (Nematoda) compared to some of their hosts (Osteichthyes). Helminthologia, 37, 15–18. [Google Scholar]
  58. Wakawa RJ, Uzairu A, Kagbu JA, Balarabe ML. 2008. Impact assessment of effluent discharge on physicochemical parameters and some heavy metal concentrations in surface water of river challawa Kano, Nigeria. African Journal of Pure and Applied Chemistry, 2, 100–106. [Google Scholar]
  59. Yousafzai AM, Khan AR, Shakoori AR. 2009. Trace metal accumulation in the liver of an endangered South Asian fresh water fish dwelling in sub-lethal pollution. Pakistan Journal of Zoology, 41, 35–41. [Google Scholar]
  60. Zimmermann S, Menzel C, Berner Z, Eckhardt JD, Stüben D, Alt F, Messerschmidt J, Taraschewski H, Sures B. 2001. Trace analysis of platinum in biological samples: A comparison between high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) following microwave digestion and adsorptive cathodic stripping voltammetry (ACSV) after high pressure ashing. Analytica Chimica Acta, 439(Suppl. 2), 203–209. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.