Open Access
Research Article
Issue
Parasite
Volume 25, 2018
Article Number 37
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2018040
Published online 23 July 2018
  1. Alday PH, Doggett JS. 2017. Drugs in development for toxoplasmosis: advances, challenges, and current status. Drug Design Development and Therapy, 11, 273–293. [CrossRef] [Google Scholar]
  2. Allahyari M, Mohit E. 2016. Peptide/protein vaccine delivery system based on PLGA particles. Human Vaccines & Immunotherapeutics, 12(3), 806–828. [CrossRef] [PubMed] [Google Scholar]
  3. Ayoade F, Todd J, Al-Delfi F, King J. 2017. Extensive brain masses and cavitary lung lesions associated with toxoplasmosis and acquired immunodeficiency syndrome. International Journal of STD & AIDS, 28(11), 1150–1154. [CrossRef] [PubMed] [Google Scholar]
  4. Behnke MS, Wootton JC, Lehmann MM, Radke JB, Lucas O, Nawas J, Sibley LD, White MW. 2010. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS One, 5(8), e12354. [CrossRef] [PubMed] [Google Scholar]
  5. Belluco S, Simonato G, Mancin M, Pietrobelli M, Ricci A. 2017. Toxoplasma gondii infection and food consumption: a systematic review and meta-analysis of case-controlled studies. Critical Reviews in Food Science and Nutrition, 11, 1–12. [CrossRef] [Google Scholar]
  6. Binder RJ. 2014. Functions of heat shock proteins in pathways of the innate and adaptive immune system. Journal of Immunology, 193(12), 5765–5771. [CrossRef] [Google Scholar]
  7. Binder RJ. 2008. Heat-shock protein-based vaccines for cancer and infectious disease. Expert Review of Vaccines, 7(3), 383–393. [CrossRef] [PubMed] [Google Scholar]
  8. Connolly MP, Goodwin E, Schey C, Zummo J. 2017. Toxoplasmic encephalitis relapse rates with pyrimethamine-based therapy: systematic review and meta-analysis. Pathogens and Global Health, 111(1), 31–44. [CrossRef] [PubMed] [Google Scholar]
  9. Coskun KA, Ozgür A, Otag B, Mungan M, Tutar Y. 2013. Heat shock protein 40-Gok1 isolation from Toxoplasma gondii RH strain. Protein and Peptide Letters, 20(12), 1294–1301. [CrossRef] [PubMed] [Google Scholar]
  10. Dupont CD, Christian DA, Hunter CA. 2012. Immune response and immunopathology during toxoplasmosis. Seminars in Immunopathology, 34(6), 793–813. [CrossRef] [PubMed] [Google Scholar]
  11. Fox BA, Sanders KL, Chen S, Bzik DJ. 2013. Targeting tumors with nonreplicating Toxoplasma gondii uracil auxotroph vaccines. Trends in Parasitology, 29(9), 431–437. [CrossRef] [PubMed] [Google Scholar]
  12. Fux B, Nawas J, Khan A, Gill DB, Su C, Sibley LD. 2007. Toxoplasma gondii strains defective in oral transmission are also defective in developmental stage differentiation. Infection and Immunity, 75(5), 2580–2590. [CrossRef] [PubMed] [Google Scholar]
  13. Gao Q, Zhang NZ, Zhang FK, Wang M, Hu LY, Zhu XQ. 2018. Immune response and protective effect against chronic Toxoplasma gondii infection induced by vaccination with a DNA vaccine encoding profilin. BMC Infectious Diseases, 18(1), 117. [CrossRef] [PubMed] [Google Scholar]
  14. Gazzinelli RT, Hakim FT, Hieny S, Shearer GM, Sher A. 1991. Synergistic role of CD4 + and CD8 + T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. Journal of Immunology, 146(1), 286–292. [Google Scholar]
  15. Gorenberg EL, Chandra SS. 2017. The role of co-chaperones in synaptic proteostasis and neurodegenerative disease. Frontiers in Neuroscience, 11, 248. [CrossRef] [PubMed] [Google Scholar]
  16. Guo J, Sun X, Yin H, Wang T, Li Y, Zhou C, Zhou H, He S, Cong H. 2018. Chitosan microsphere used as an effective system to deliver a linked antigenic peptides vaccine protect mice against acute and chronic toxoplasmosis. Frontiers in Cellular and Infection Microbiology, 8, 163. [CrossRef] [PubMed] [Google Scholar]
  17. Hiszczyńska-Sawicka E, Gatkowska JM, Grzybowski MM, Długońska H. 2014. Veterinary vaccines against toxoplasmosis. Parasitology, 141(11), 1365–1378. [CrossRef] [PubMed] [Google Scholar]
  18. Jenkins MC. 2001. Advances and prospects for subunit vaccines against protozoa of veterinary importance. Veterinary Parasitology, 101(3–4), 291–310. [CrossRef] [PubMed] [Google Scholar]
  19. Johnson LL, Sayles PC. 2002. Deficient humoral responses underlie susceptibility to Toxoplasma gondii in CD4-deficient mice. Infection and Immunity, 70(1), 185–191. [CrossRef] [PubMed] [Google Scholar]
  20. Juwono J, Martinus RD. 2016. Does hsp60 provide a link between mitochondrial stress and inflammation in diabetes mellitus?Journal of Diabetes Research, 2016, 8017571. [CrossRef] [PubMed] [Google Scholar]
  21. Knox C, Luke GA, Blatch GL, Pesce ER. 2011. Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. Virus Research, 160(1–2), 15–24. [CrossRef] [PubMed] [Google Scholar]
  22. Li ZY, Chen J, Petersen E, Zhou DH, Huang SY, Song HQ, Zhu XQ. 2014. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice. Vaccine, 32(25), 3058–3065. [CrossRef] [PubMed] [Google Scholar]
  23. Li ZY, Lu J, Zhou DH, Chen J, Zhu XQ. 2015. Sequence variation in HSP40 gene among 16 Toxoplasma gondii isolates from different hosts and geographical locations. Biomed Research International, 2015, 209792. [PubMed] [Google Scholar]
  24. Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH. 2015. The role of heat shock proteins in cancer. Cancer Letters, 360(2), 114–118. [CrossRef] [PubMed] [Google Scholar]
  25. Luft BJ, Remington JS. 1992. Toxoplasmic encephalitis in AIDS. Clinical Infectious Diseases, 15(2), 211–222. [CrossRef] [PubMed] [Google Scholar]
  26. Lütjen S, Soltek S, Virna S, Deckert M, Schlüter D. 2006. Organ- and disease-stage-specific regulation of Toxoplasma gondii-specific CD8-T-cell responses by CD4 T cells. Infection and Immunity, 74(10), 5790–5801. [CrossRef] [PubMed] [Google Scholar]
  27. Mattoo RU, Goloubinoff P. 2014. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cellular and Molecular Life Sciences, 71(17), 3311–3325. [CrossRef] [Google Scholar]
  28. Montoya JG, Liesenfeld O. 2004. Toxoplasmosis. Lancet, 363(9425), 1965–1976. [CrossRef] [PubMed] [Google Scholar]
  29. Oz HS. 2017. Fetomaternal and pediatric toxoplasmosis. Journal of Pediatric Infectious Disease, 12(4), 202–208. [CrossRef] [Google Scholar]
  30. Petersen W, Külzer S, Engels S, Zhang Q, Ingmundson A, Rug M, Maier AG, Przyborski JM. 2016. J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes. International Journal for Parasitology, 46(8), 519–525. [CrossRef] [PubMed] [Google Scholar]
  31. Pifer R, Yarovinsky F. 2011. Innate responses to Toxoplasma gondii in mice and humans. Trends in Parasitology, 27(9), 388–393. [CrossRef] [PubMed] [Google Scholar]
  32. Pockley AG. 2003. Heat shock proteins as regulators of the immune response. Lancet, 362(9382), 469–476. [CrossRef] [PubMed] [Google Scholar]
  33. Raggam RB, Salzer HJ, Marth E, Heiling B, Paulitsch AH, Buzina W. 2011. Molecular detection and characterisation of fungal heat shock protein 60. Mycoses, 54(5), e394–e399. [CrossRef] [PubMed] [Google Scholar]
  34. Srivastava P. 2002. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annual Review of Immunology, 20, 395–425. [CrossRef] [PubMed] [Google Scholar]
  35. Wang JL, Elsheikha HM, Zhu WN, Chen K, Li TT, Yue DM, Zhang XX, Huang SY, Zhu XQ. 2017. Immunization with Toxoplasma gondii GRA17 deletion mutant induces partial protection and survival in challenged mice. Frontiers in Immunology, 8, 730. [CrossRef] [PubMed] [Google Scholar]
  36. Wei HX, Wei SS, Lindsay DS, Peng HJ. 2015. A systematic review and meta-analysis of the efficacy of anti-Toxoplasma gondii medicines in humans. PLoS One, 10(9), e0138204. [CrossRef] [PubMed] [Google Scholar]
  37. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. 2017. Heat shock proteins and cancer. Trends in Pharmacological Sciences, 38(3), 226–256. [CrossRef] [PubMed] [Google Scholar]
  38. Yuan ZG, Zhang XX, Lin RQ, Petersen E, He S, Yu M, He XH, Zhou DH, He Y, Li HX, Liao M, Zhu XQ. 2011. Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18. Vaccine, 29(38), 6614–6619. [CrossRef] [PubMed] [Google Scholar]
  39. Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. 2013. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Review of Vaccines, 12(11), 1287–1299. [CrossRef] [PubMed] [Google Scholar]
  40. Zhang NZ, Huang SY, Zhou DH, Chen J, Xu Y, Tian WP, Lu J, Zhu XQ. 2013. Protective immunity against Toxoplasma gondii induced by DNA immunization with the gene encoding a novel vaccine candidate: calcium-dependent protein kinase 3. BMC infectious diseases, 13, 512. [CrossRef] [PubMed] [Google Scholar]
  41. Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. 2015. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Review of Vaccines, 14(12), 1609–1621. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.