Open Access
Volume 25, 2018
Article Number 40
Number of page(s) 7
Published online 27 July 2018
  1. Coetzee M, Hunt RH, Wilkerson R, Della TA, Coulibaly MB, Besansky NJ. 2013. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa, 36(19), 246–274. [Google Scholar]
  2. Degefa T, Yewhalaw D, Zhou G, Lee MC, Atieli H, Githeko AK, Yan G. 2017. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malaria Journal, 16, 443. [CrossRef] [PubMed] [Google Scholar]
  3. Fyodorova MV, Savage HM, Lopatina JV, Bulgakova TA, Ivanitsky AV, Platonova OV, Platonov AE. 2006. Evaluation of potential West Nile virus vectors in Volgograd region, Russia, 2003 (Diptera: Culicidae): species composition, bloodmeal host utilization, and virus infection rates of mosquitoes. Journal of Medical Entomology, 43, 552–563. [CrossRef] [PubMed] [Google Scholar]
  4. Gomes B, Sousa CA, Vicente JL, Pinho L, Calderon I, Arez E, Almeida AP, Donnelly MJ, Pinto J. 2013. Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization. Parasites & Vectors, 6, 93. [CrossRef] [PubMed] [Google Scholar]
  5. Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, Benz D, Gething PW, Howes RE, Patil AP, Temperley WH, Bangs MJ, Chareonviriyaphap T, Elyazar IR, Harbach RE, Hemingway J, Manguin S, Mbogo CM, Rubio-Palis Y, Godfray HC. 2010. Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Medecine, 7, e1000209. [CrossRef] [Google Scholar]
  6. Honig V, Carolan HE, Vavruskova Z, Massire C, Mosel MR, Crowder CD, Rounds MA, Ecker DJ, Ruzek D, Grubhoffer L, Luft BJ, Eshoo MW. 2017. Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiology Ecology, 93(11), 129. [Google Scholar]
  7. Keller JI, Ballif BA, St Clair RM, Vincent JJ, Monroy MC, Stevens L. 2017. Chagas disease vector blood meal sources identified by protein mass spectrometry. PLoS One, 12, e0189647. [CrossRef] [PubMed] [Google Scholar]
  8. Laroche M, Almeras L, Pecchi E, Bechah Y, Raoult D, Viola A, Parola P. 2017. MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malaria Journal, 16, 5. [CrossRef] [PubMed] [Google Scholar]
  9. Laroche M, Berenger JM, Gazelle G, Blanchet D, Raoult D, Parola P. 2017. MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology, 145(5), 665–675. [CrossRef] [PubMed] [Google Scholar]
  10. Laskay UA, Breci L, Vilcins IM, Dietrich G, Barbour AG, Piesman J, Wysocki VH. 2013. Survival of host blood proteins in Ixodes scapularis (Acari: Ixodidae) ticks: a time course study. Journal of Medical Entomology, 50, 1282–1290. [CrossRef] [PubMed] [Google Scholar]
  11. Laskay UA, Burg J, Kaleta EJ, Vilcins IM, Telford Iii SR, Barbour AG, Wysocki VH. 2012. Development of a host blood meal database: de novo sequencing of hemoglobin from nine small mammals using mass spectrometry. Biology Chemistry, 393, 195–201. [CrossRef] [Google Scholar]
  12. Lekweiry KM, Salem MS, Cotteaux-Lautard C, Jarjaval F, Marin-Jauffre A, Bogreau H, Basco L, Briolant S, Boukhary AO, Brahim KO, Pages F. 2016. Circumsporozoite protein rates, blood-feeding pattern and frequency of knockdown resistance mutations in Anopheles spp. in two ecological zones of Mauritania. Parasites & Vectors, 9, 268. [CrossRef] [PubMed] [Google Scholar]
  13. Logue K, Keven JB, Cannon MV, Reimer L, Siba P, Walker ED, Zimmerman PA, Serre D. 2016. Unbiased characterization of Anopheles mosquito blood meals by targeted high-throughput sequencing. PLoS Neglected and Tropical Diseases, 10, e0004512. [CrossRef] [Google Scholar]
  14. Martinez-de la Puente J, Ruiz S, Soriguer R, Figuerola J. 2013. Effect of blood meal digestion and DNA extraction protocol on the success of blood meal source determination in the malaria vector Anopheles atroparvus. Malaria Journal, 12, 109. [CrossRef] [PubMed] [Google Scholar]
  15. Moreno M, Saavedra MP, Bickersmith SA, Prussing C, Michalski A, Tong RC, Vinetz JM, Conn JE. 2017. Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals. PLoS Neglected and Tropical Diseases, 11, e0005337. [CrossRef] [Google Scholar]
  16. Niaré S, Almeras L, Tandina F, Yssouf A, Bacar A, Toilibou A, Doumbo O, Raoult D, Parola P. 2017. MALDI-TOF MS identification of Anopheles gambiae Giles blood meal crushed on Whatman filter papers. PLoS One, 12, e0183238. [CrossRef] [PubMed] [Google Scholar]
  17. Niaré S, Berenger JM, Dieme C, Doumbo O, Raoult D, Parola P, Almeras L. 2016. Identification of blood meal sources in the main African malaria mosquito vector by MALDI-TOF MS. Malaria Journal, 15, 87. [CrossRef] [PubMed] [Google Scholar]
  18. Niaré S, Tandina F, Davoust B, Doumbo O, Raoult D, Parola P, Almeras L. 2017. Accurate identification of Anopheles gambiae Giles trophic preferences by MALDI-TOF MS. Infection, Genetics and Evolution. pii: S1567-1348(17)30315-5. [Google Scholar]
  19. Onder O, Shao W, Kemps BD, Lam H, Brisson D. 2013. Identifying sources of tick blood meals using unidentified tandem mass spectral libraries. Nature Communication, 4, 1746. [CrossRef] [Google Scholar]
  20. Sambou M, Aubadie-Ladrix M, Fenollar F, Fall B, Bassene H, Almeras L, Sambe-Ba B, Perrot N, Chatellier S, Faye N, Parola P, Wade B, Raoult D, Mediannikov O. 2015. Comparison of matrix-assisted laser desorption ionization-time of flight mass spectrometry and molecular biology techniques for identification of Culicoides (Diptera: ceratopogonidae) biting midges in Senegal. Journal of Clinical Microbiology, 53, 410–418. [CrossRef] [PubMed] [Google Scholar]
  21. Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. 2010. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiology, 5, 1733–1754. [CrossRef] [PubMed] [Google Scholar]
  22. Sougoufara S, Sokhna C, Diagne N, Doucoure S, Sembene PM, Harry M. 2017. The implementation of long-lasting insecticidal bed nets has differential effects on the genetic structure of the African malaria vectors in the Anopheles gambiae complex in Dielmo. Senegal. Malaria Journal, 16, 337. [CrossRef] [Google Scholar]
  23. Tandina F, Niaré S, Laroche M, Koné AK, Diarra AZ, Ongoiba A, Berenger JM, Doumbo OK, Raoult D, Parola P. 2018. Using MALDI-TOF MS to identify mosquitoes collected in Mali and their blood meals. Parasitology, 7, 1–13. [Google Scholar]
  24. Yssouf A, Almeras L, Berenger JM, Laroche M, Raoult D, Parola P. 2015. Identification of tick species and disseminate pathogen using hemolymph by MALDI-TOF MS. Ticks and Tick Borne Diseases, 6, 579–586. [CrossRef] [Google Scholar]
  25. Yssouf A, Almeras L, Raoult D, Parola P. 2016. Emerging tools for identification of arthropod vectors. Future Microbiology, 11, 549–566. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.