Open Access
Volume 25, 2018
Article Number 26
Number of page(s) 17
Published online 08 May 2018
  1. Allary M, Schrével J, Florent I. 2002. Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology, 125, 1–10. [CrossRef] [PubMed] [Google Scholar]
  2. Aminake MN, Arndt H-D., Pradel G. 2012. The proteasome of malaria parasites: a multi-stage drug target for chemotherapeutic intervention? International Journal for Parasitology. Drugs and Drug Resistance, 2, 1–10. [CrossRef] [PubMed] [Google Scholar]
  3. Azimzadeh O, Sow C, Gèze M, Nyalwidhe J, Florent I. 2010. Plasmodium falciparum PfA-M1 aminopeptidase is trafficked via the parasitophorous vacuole and marginally delivered to the food vacuole. Malaria Journal, 9, 189. [Google Scholar]
  4. Barragan A, Sibley LD. 2003. Migration of Toxoplasma gondii across biological barriers. Trends in Microbiology, 11, 426–430. [CrossRef] [PubMed] [Google Scholar]
  5. Berthonneau J, Rodier MH, El Moudni B, Jacquemin JL. 2000. Toxoplasma gondii: purification and characterization of an immunogenic metallopeptidase. Experimental Parasitology, 95, 158–162. [Google Scholar]
  6. Bland ND, Pinney JW, Thomas JE, Turner AJ, Isaac RE. 2008. Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evolutionary Biology, 8, 16. [CrossRef] [PubMed] [Google Scholar]
  7. Bounaadja L, Schmitt M, Albrecht S, Mouray E, Tarnus C, Florent I. 2017. Selective inhibition of PfA-M1, over PfA-M17, by an amino-benzosuberone derivative blocks malaria parasites development in vitro and in vivo. Malaria Journal, 16, 382. [CrossRef] [Google Scholar]
  8. Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biology, 1, E5. [CrossRef] [PubMed] [Google Scholar]
  9. Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferguson DJ, Sanderson SJ, Wastling JM, Boothroyd JC. 2005. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. The Journal of Biological Chemistry, 280, 34245–34258. [CrossRef] [PubMed] [Google Scholar]
  10. Burley SK, David PR, Taylor A, Lipscomb WN. 1990. Molecular structure of leucine aminopeptidase at 2.7 Å resolution. Proceedings of the National Academy of Sciences of the United States of America, 87, 6878–6882. [CrossRef] [PubMed] [Google Scholar]
  11. Chen X, Chong CR, Shi L, Yoshimoto T, Sullivan DJ, Liu JO. 2006. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proceedings of the National Academy of Sciences of the United States of America, 103, 14548–14553. [CrossRef] [PubMed] [Google Scholar]
  12. Chen X, Xie S, Bhat S, Kumar N, Shapiro TA, Liu JO. 2009. Fumagillin and fumarranol interact with P. falciparum methionine aminopeptidase 2 and inhibit malaria parasite growth in vitro and in vivo. Chemistry and Biology, 16, 193-202. [CrossRef] [Google Scholar]
  13. Cleary MD, Singh U, Blader IJ, Brewer JL, Boothroyd JC. 2002. Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryotic Cell, 1, 329–340. [Google Scholar]
  14. Dalal S, Klemba M. 2007. Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. Journal of Biological Chemistry, 282, 35978-35987. [CrossRef] [Google Scholar]
  15. Dalal S, Ragheb D, Schubot F, Klemba M. 2013. A naturally variable residue in the S1 subsite of M1 family aminopeptidases modulates catalytic properties and promotes functional specialization. Journal of Biological Chemistry, 288, 26004-26012. [CrossRef] [Google Scholar]
  16. Deu E. 2017. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS Journal, 284, 2604-2628. [CrossRef] [Google Scholar]
  17. Eggleson KK, Duffin KL, Goldberg DE. 1999. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. Journal of Biological Chemistry, 274, 32411–32417. [CrossRef] [Google Scholar]
  18. Fetterer RH, Miska KB, Barfield RC. 2005. Partial purification and characterization of an aminopeptidase from Eimeria tenella. Journal of Parasitology, 91, 1280–1286. [CrossRef] [Google Scholar]
  19. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 44, D279-285. [CrossRef] [PubMed] [Google Scholar]
  20. Florent I, Derhy Z, Allary M, Monsigny M, Mayer R, Schrével J. 1998. A Plasmodium falciparum aminopeptidase gene belonging to the M1 family of zinc-metallopeptidases is expressed in erythrocytic stages. Molecular and Biochemical Parasitology, 97, 149–160. [CrossRef] [PubMed] [Google Scholar]
  21. Gakh O, Cavadini P, Isaya G. 2002. Mitochondrial processing peptidases. Biochimica et Biophysica Acta, 1592, 63–77. [CrossRef] [PubMed] [Google Scholar]
  22. Gras S, Byzia A, Gilbert FB, McGowan S, Drag M, Silvestre A, Niepceron A, Lecaille F, Lalmanach G, Brossier F. 2014. Aminopeptidase N1 (EtAPN1), an M1 metalloprotease of the apicomplexan parasite Eimeria tenella, participates in parasite development. Eukaryotic Cell, 13, 884–895. [CrossRef] [PubMed] [Google Scholar]
  23. Hajagos BE, Turetzky JM, Peng ED, Cheng SJ, Ryan CM, Souda P, Whitelegge JP, Lebrun M, Dubremetz J-F., Bradley PJ. 2012. Molecular dissection of novel trafficking and processing of the Toxoplasma gondii rhoptry metalloprotease toxolysin-1. Traffic, 13, 292–304. [CrossRef] [PubMed] [Google Scholar]
  24. Harbut MB, Velmourougane G, Dalal S, Reiss G, Whisstock JC, Onder O, Brisson D, McGowan S, Klemba M, Greenbaum DC. 2011. Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proceedings of the National Academy of Sciences of the United States of America, 108, E526-E534. [CrossRef] [PubMed] [Google Scholar]
  25. Jia H, Nishikawa Y, Luo Y, Yamagishi J, Sugimoto C, Xuan X. 2010. Characterization of a leucine aminopeptidase from Toxoplasma gondii. Molecular and Biochemical Parasitology, 170, 1–6. [CrossRef] [PubMed] [Google Scholar]
  26. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Research, 42, D199-205. [CrossRef] [PubMed] [Google Scholar]
  27. Kang J-M., Ju H-L., Sohn W-M., Na B-K. 2011. Molecular cloning and characterization of a M17 leucine aminopeptidase of Cryptosporidium parvum. Parasitology, 138, 682–690. [CrossRef] [PubMed] [Google Scholar]
  28. Kannan Sivaraman K, Paiardini A, Sieńczyk M, Ruggeri C, Oellig CA, Dalton JP, Scammells PJ, Drag M, McGowan S. 2013. Synthesis and structure-activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from Plasmodium falciparum. Journal of Medicinal Chemistry, 56, 5213–5217. [Google Scholar]
  29. Karnataki A, Derocher AE, Coppens I, Feagin JE, Parsons M. 2007. A membrane protease is targeted to the relict plastid of toxoplasma via an internal signal sequence. Traffic, 8, 1543–1553. [CrossRef] [PubMed] [Google Scholar]
  30. Karnataki A, DeRocher AE, Feagin JE, Parsons M. 2009. Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Molecular and Biochemical Parasitology, 166, 126–133. [CrossRef] [PubMed] [Google Scholar]
  31. Katrib M, Ikin RJ, Brossier F, Robinson M, Slapetova I, Sharman PA, Walker RA, Belli SI, Tomley FM, Smith NC. 2012. Stage-specific expression of protease genes in the apicomplexan parasite, Eimeria tenella. BMC genomics, 13, 685. [CrossRef] [PubMed] [Google Scholar]
  32. Kinch LN, Ginalski K, Grishin NV. 2006. Site-2 protease regulated intramembrane proteolysis: sequence homologs suggest an ancient signaling cascade. Protein Science, 15, 84-93. [CrossRef] [Google Scholar]
  33. Koussis K, Goulielmaki E, Chalari A, Withers-Martinez C, Siden-Kiamos I, Matuschewski K, Loukeris TG. 2017. Targeted deletion of a Plasmodium site-2 protease impairs life cycle progression in the mammalian host. PLoS One, 12, e0170260. [CrossRef] [PubMed] [Google Scholar]
  34. Laliberté J, Carruthers VB. 2011. Toxoplasma gondii toxolysin 4 is an extensively processed putative metalloproteinase secreted from micronemes. Molecular and Biochemical Parasitology, 177, 49–56. [CrossRef] [PubMed] [Google Scholar]
  35. Lau YL, Lee WC, Gudimella R, Zhang G, Ching XT, Razali R, Aziz F, Anwar A, Fong MY. 2016. Deciphering the draft genome of Toxoplasma gondii RH strain. PLoS One, 11, e0157901. [CrossRef] [PubMed] [Google Scholar]
  36. Lauterbach SB, Coetzer TL. 2008. The M18 aspartyl aminopeptidase of Plasmodium falciparum binds to human erythrocyte spectrin in vitro. Malaria Journal, 7, 161. [CrossRef] [PubMed] [Google Scholar]
  37. Li H, Child MA, Bogyo M. 2012. Proteases as regulators of pathogenesis: examples from the Apicomplexa. Biochimica et Biophysica Acta, 1824, 177–185. [CrossRef] [PubMed] [Google Scholar]
  38. Llinás M, Bozdech Z, Wong ED, Adai AT, DeRisi JL. 2006. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Research, 34, 1166-73. [CrossRef] [PubMed] [Google Scholar]
  39. Lorenzi H, Khan A, Behnke MS, Namasivayam S, Swapna LS, Hadjithomas M, Karamycheva S, Pinney D, Brunk BP, Ajioka JW, Ajzenberg D, Boothroyd JC, Boyle JP, Dardé ML, Diaz-Miranda MA, Dubey JP, Fritz HM, Gennari SM, Gregory BD, Kim K, Saeij JP, Su C, White MW, Zhu XQ, Howe DK, Rosenthal BM, Grigg ME, Parkinson J, Liu L, Kissinger JC, Roos DS, Sibley LD. 2016. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nature communications, 7, 10147. [Google Scholar]
  40. Lüdke A, Krämer R, Burkovski A, Schluesener D, Poetsch A. 2007. A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH. BMC Microbiology, 25, 6. [CrossRef] [Google Scholar]
  41. Marcilla A, De la Rubia JE, Sotillo J, Bernal D, Carmona C, Villavicencio Z, Acosta D, Tort J, Bornay FJ, Esteban JG, Toledo R. 2008. Leucine aminopeptidase is an immunodominant antigen of Fasciola hepatica excretory and secretory products in human infections. Clinical and Vaccine Immunology, 15, 95-100. [Google Scholar]
  42. Maric S, Donnelly SM, Robinson MW, Skinner-Adams T, Trenholme KR, Gardiner DL, Dalton JP, Stack CM, Lowther J. 2009. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors. Biochemistry, 48, 5435–5439. [CrossRef] [PubMed] [Google Scholar]
  43. McGowan S, Porter CJ, Lowther J, Stack CM, Golding SJ, Skinner-Adams TS, Trenholme KR, Teuscher F, Donnelly SM, Grembecka J, Mucha A, Kafarski P, DeGori R, Buckle AM, Gardiner DL, Whisstock JC, Dalton JP. 2009. Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proceedings of the National Academy of Sciences of the United States of America, 106, 2537–2542. [CrossRef] [PubMed] [Google Scholar]
  44. McGowan S, Oellig CA, Birru WA, Caradoc-Davies TT, Stack CM, Lowther J, Skinner-Adams T, Mucha A, Kafarski P, Grembecka J, Trenholme KR, Buckle AM, Gardiner DL, Dalton JP, Whisstock JC. 2010. Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proceedings of the National Academy of Sciences of the United States of America, 107, 2449–2454. [CrossRef] [PubMed] [Google Scholar]
  45. McKerrow JH. 1989. Parasite proteases. Experimental Parasitology, 68, 111-115. [CrossRef] [PubMed] [Google Scholar]
  46. McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. 2006. Proteases in parasitic diseases. Annual Review of Pathology, 1, 497-536. [CrossRef] [PubMed] [Google Scholar]
  47. Murata CE, Goldberg DE. 2003. Plasmodium falciparum falcilysin: an unprocessed food vacuole enzyme. Molecular and Biochemical Parasitology, 129, 123–126. [Google Scholar]
  48. Nankya-Kitaka MF, Curley GP, Gavigan CS, Bell A, Dalton JP. 1998. Plasmodium chabaudi chabaudi and P. falciparum: inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitology Research, 84, 552-558. [CrossRef] [PubMed] [Google Scholar]
  49. Padda RS, Tsai A, Chappell CL, Okhuysen PC. 2002. Molecular cloning and analysis of the Cryptosporidium parvum aminopeptidase N gene. International Journal for Parasitology, 32, 187–197. [CrossRef] [PubMed] [Google Scholar]
  50. Paiardini A, Bamert RS, Kannan-Sivaraman K, Drinkwater N, Mistry SN, Scammells PJ, McGowan S. 2015. Screening the medicines for malaria venture ‘Malaria Box’ against the Plasmodium falciparum aminopeptidases, M1, M17 and M18. PLoS One, 10, e0115859. [CrossRef] [Google Scholar]
  51. Paugam A, Creuzet C, Dupouy-Camet J, Roisin MP. 2001. Evidence for the existence of a proteasome in Toxoplasma gondii : intracellular localization and specific peptidase activities. Parasite, 8, 267-73. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Ponpuak M, Klemba M, Park M, Gluzman IY, Lamppa GK, Goldberg DE. 2006. A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Molecular Microbiology, 63, 314-334. [CrossRef] [PubMed] [Google Scholar]
  53. Poreba M, McGowan S, Skinner-Adams TS, Trenholme KR, Gardiner DL, Whisstock JC, To J, Salvesen GS, Dalton JP, Drag M. 2012. Fingerprinting the substrate specificity of M1 and M17 aminopeptidases of human malaria, Plasmodium falciparum. PLoS One, 7, e31938. [CrossRef] [PubMed] [Google Scholar]
  54. Ragheb D, Dalal S, Bompiani KM, Ray WK, Klemba M. 2011. Distribution and biochemical properties of an M1-family aminopeptidase in Plasmodium falciparum indicate a role in vacuolar hemoglobin catabolism. Journal of Biological Chemistry, 286, 27255–27265. [CrossRef] [Google Scholar]
  55. Ralph SA. 2007. Subcellular multitasking − multiple destinations and roles for the Plasmodium falcilysin protease. Molecular Microbiology, 63, 309–313. [CrossRef] [PubMed] [Google Scholar]
  56. Rawlings ND, Barrett AJ, Finn R. 2016. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 44, D343-350. [CrossRef] [PubMed] [Google Scholar]
  57. Skinner-Adams TS, Stack CM, Trenholme KR, Brown CL, Grembecka J, Lowther J, Mucha A, Drag M, Kafarski P, McGowan S, Whisstock JC, Gardiner DL, Dalton JP . 2010. Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends in Biochemical Sciences, 35, 53–61. [Google Scholar]
  58. Spicer T, Fernandez-Vega V, Chase P, Scampavia L, To J, Dalton JP, Da Silva FL, Skinner-Adams TS, Gardiner DL, Trenholme KR, Brown CL, Ghosh P, Porubsky P, Wang JL, Whipple DA, Schoenen FJ, Hodder P. 2014. Identification of potent and selective inhibitors of the Plasmodium falciparum M18 aspartyl aminopeptidase (PfM18AAP) of human malaria via high-throughput screening. Journal of Biomolecular Screening, 19, 1107–1115. [CrossRef] [PubMed] [Google Scholar]
  59. Stack CM, Lowther J, Cunningham E, Donnelly S, Gardiner DL, Trenholme KR, Skinner-Adams TS, Teuscher F, Grembecka J, Mucha A, Kafarski LL, Bell A, Dalton JP. 2007. Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. Journal of Biological Chemistry, 282, 2069–2080. [CrossRef] [Google Scholar]
  60. Tanveer A, Allen SM, Jackson KE, Charan M, Ralph SA, Habib S. 2013. An FtsH protease is recruited to the mitochondrion of Plasmodium falciparum. PloS One, 8, e74408. [CrossRef] [PubMed] [Google Scholar]
  61. Teuscher F, Lowther J, Skinner-Adams TS, Spielmann T, Dixon MWA, Stack CM, Donnelly S, Mucha A, Kafarski P, Vassiliou S, Gardiner DL, Dalton JP, Trenholme KR. 2007. The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum. Journal of Biological Chemistry, 282, 30817–30826. [CrossRef] [Google Scholar]
  62. Trenholme KR, Brown CL, Skinner-Adams TS, Stack C, Lowther J, To J, Robinson MW, Donnelly SM, Dalton JP, Gardiner DL. 2010. Aminopeptidases of malaria parasites: new targets for chemotherapy. Infectious Disorders Drug Targets, 10, 217–225. [CrossRef] [PubMed] [Google Scholar]
  63. Van Dooren GG, Su V, D’Ombrain MC, McFadden GI. 2002. Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. Journal of Biological Chemistry, 277, 23612-23619. [CrossRef] [Google Scholar]
  64. Wang L, Delahunty C, Fritz-Wolf K, Rahlfs S, Helena Prieto J, Yates JR, Becker K. 2015. Characterization of the 26S proteasome network in Plasmodium falciparum. Scientific Reports, 5, 17818. [Google Scholar]
  65. Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, Saxena A, Shanmugam D, Tayyrov A, Veluchamy A, Ali S, Bernal A, del Campo J, Cihlář J, Flegontov P, Gornik SG, Hajdušková E, Horák A, Janouškovec J, Katris NJ, Mast FD, Miranda-Saavedra D, Mourier T, Naeem R, Nair M, Panigrahi AK, Rawlings ND, Padron-Regalado E, Ramaprasad A, Samad N, Tomčala A, Wilkes J, Neafsey DE, Doerig C, Bowler C, Keeling PJ, Roos DS, Dacks JB, Templeton TJ, Waller RF, Lukeš J, Oborník M, Pain A. 2015. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife, 4, e06974. [Google Scholar]
  66. Wu Y, Wang X, Liu X, Wang Y. 2003. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Research, 13, 601–616. [CrossRef] [PubMed] [Google Scholar]
  67. Yang M, Zheng J, Jia H, Song M. 2016. Functional characterization of X-prolyl aminopeptidase from Toxoplasma gondii. Parasitology, 143, 1443–1449. [CrossRef] [PubMed] [Google Scholar]
  68. Zheng J, Jia H, Zheng Y. 2015. Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9. International Journal for Parasitology, 45, 141–148. [CrossRef] [PubMed] [Google Scholar]
  69. Zheng J, Cheng Z, Jia H, Zheng Y. 2016. Characterization of aspartyl aminopeptidase from Toxoplasma gondii. Scientific Reports, 6, 34448. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.