Open Access
Volume 24, 2017
Article Number 38
Number of page(s) 14
Published online 16 October 2017
  1. Achidi EA, Apinjoh TO, Yafi CN, Besingi R, Anchang JK, Awah NW, Troye-Blomberg M. 2013. Plasma levels of tumour necrosis factor-alpha, interleukin-10, interleukin-12, macrophage inhibition factor and transforming growth factor-beta in children with severe and uncomplicated falciparum malaria. Journal of Tropical Diseases and Public health. [Google Scholar]
  2. Amani V, Boubou MI, Pied S, Marussig M, Walliker D, Mazier D, Rénia L. 1998. Cloned lines of Plasmodium berghei ANKA differ in their abilities to induce experimental cerebral malaria. Infection and Immunity, 66(9), 4093-4099. [PubMed] [Google Scholar]
  3. Amani V, Vigário AM, Belnoue E, Marussig M, Fonseca L, Mazier D, Rénia L. 2000. Involvement of IFN-γ receptor-mediated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. European Journal of Immunology, 30(6), 1646-1655. [CrossRef] [PubMed] [Google Scholar]
  4. Amante FH, Stanley AC, Randall LM, Zhou Y, Haque A, McSweeney K, Waters AP, Janse CJ, Good MF, Hill GR. 2007. A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. American Journal of Pathology, 171(2), 548-559. [CrossRef] [Google Scholar]
  5. Artavanis-Tsakonas K, Tongren J, Riley E. 2003. The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clinical & Experimental Immunology, 133(2), 145-152. [CrossRef] [Google Scholar]
  6. Baccarella A, Huang BW, Fontana MF, Kim CC. 2014. Loss of Toll-like receptor 7 alters cytokine production and protects against experimental cerebral malaria. Malaria Journal, 13, 354. [CrossRef] [PubMed] [Google Scholar]
  7. Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S, Vigário AM. 2010. Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infection and Immunity, 78(9), 4033-4039. [CrossRef] [PubMed] [Google Scholar]
  8. Bleich A, Köhn I, Glage S, Beil W, Wagner S, Mähler M. 2005. Multiple in vivo passages enhance the ability of a clinical Helicobacter pylori isolate to colonize the stomach of Mongolian gerbils and to induce gastritis. Laboratory Animals, 39(2), 221-229. [CrossRef] [PubMed] [Google Scholar]
  9. Bleich EM, Martin M, Bleich A, Klos A. 2010. The Mongolian gerbil as a model for inflammatory bowel disease. International Journal of Experimental Pathology, 91(3), 281-287. [CrossRef] [PubMed] [Google Scholar]
  10. Bopp SE, Ramachandran V, Henson K, Luzader A, Lindstrom M, Spooner M, Steffy BM, Suzuki O, Janse C, Waters AP. 2010. Genome wide analysis of inbred mouse lines identifies a locus containing ppar-γ as contributing to enhanced malaria survival. PLoS One, 5(5), e10903. [CrossRef] [Google Scholar]
  11. Cai G, Kastelein RA, Hunter CA. 1999. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-γ when combined with IL-18. European Journal of Immunology, 29(9), 2658-2665. [CrossRef] [Google Scholar]
  12. Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL. 2002. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, 419(6906), 512-519. [CrossRef] [PubMed] [Google Scholar]
  13. Carvalho L, Lenzi HL, Pelajo-Machado M, Oliveira DN, Daniel-Ribeiro C, Ferreira-da-Cruz M. 2000. Plasmodium berghei: cerebral malaria in CBA mice is not clearly related to plasma TNF levels or intensity of histopathological changes. Experimental Parasitology, 95(1), 1-7. [CrossRef] [PubMed] [Google Scholar]
  14. Claser C, Malleret B, Gun SY, Wong AYW, Chang ZW, Teo P, See PCE, Howland SW, Ginhoux F, Rénia L. 2011. CD8+ T cells and IFN-γ mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria. PloS one, 6(4), e18720. [CrossRef] [Google Scholar]
  15. Couper KN, Blount DG, Riley EM. 2008. IL-10: the master regulator of immunity to infection. Journal of Immunology, 180(9), 5771-5777. [CrossRef] [Google Scholar]
  16. Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, Turner G, Langhorne J. 2012. The role of animal models for research on severe malaria. PLoS Pathogens, 8(2), e1002401. [CrossRef] [Google Scholar]
  17. Cross CE, Langhorne J. 1998. Plasmodium chabaudi chabaudi (AS): inflammatory cytokines and pathology in an erythrocytic-stage infection in mice. Experimental Parasitology, 90(3), 220-229. [CrossRef] [PubMed] [Google Scholar]
  18. Curfs J, Schetters T, Hermsen C, Jerusalem C, Van Zon A, Eling W. 1989. Immunological aspects of cerebral lesions in murine malaria. Clinical and Experimental Immunology, 75(1), 136. [PubMed] [Google Scholar]
  19. Dascombe M, Sidara J. 1994. The absence of fever in rat malaria is associated with increased turnover of 5-hydroxytryptamine in the brain, in: Temperature Regulation. Springer. p. 47-52. [CrossRef] [Google Scholar]
  20. Day NP, Hien TT, Schollaardt T, Loc PP, Van Chuong L, Chau TTH, Mai NTH, Phu NH, Sinh DX, White NJ. 1999. The prognostic and pathophysiologic role of pro-and antiinflammatory cytokines in severe malaria. Journal of Infectious Diseases, 180(4), 1288-1297. [CrossRef] [Google Scholar]
  21. de Kossodo S, Grau G. 1993. Profiles of cytokine production in relation with susceptibility to cerebral malaria. Journal of Immunology, 151(9), 4811-4820. [Google Scholar]
  22. de Miranda AS, Lacerda-Queiroz N, de Carvalho Vilela M, Rodrigues DH, Rachid MA, Quevedo J, Teixeira AL. 2011. Anxiety-like behavior and proinflammatory cytokine levels in the brain of C57BL/6 mice infected with Plasmodium berghei (strain ANKA). Neuroscience Letters, 491(3), 202-206. [CrossRef] [PubMed] [Google Scholar]
  23. Deroost K, Lays N, Noppen S, Martens E, Opdenakker G, Van den Steen PE. 2012. Improved methods for haemozoin quantification in tissues yield organ-and parasite-specific information in malaria-infected mice. Malaria Journal, 11, 166. [CrossRef] [PubMed] [Google Scholar]
  24. Deroost K, Lays N, Pham T-T, Baci D, Van den Eynde K, Komuta M, Prato M, Roskams T, Schwarzer E, Opdenakker G. 2014. Hemozoin induces hepatic inflammation in mice and is differentially associated with liver pathology depending on the Plasmodium strain. PloS ONE, 9(11), e113519. [CrossRef] [PubMed] [Google Scholar]
  25. Deroost K, Tyberghein A, Lays N, Noppen S, Schwarzer E, Vanstreels E, Komuta M, Prato M, Lin J-W., Pamplona A. 2013. Hemozoin induces lung inflammation and correlates with malaria-associated acute respiratory distress syndrome. American journal of Respiratory Cell and Molecular Biology, 48(5), 589-600. [CrossRef] [PubMed] [Google Scholar]
  26. Dinhopl N, Mostegl MM, Richter B, Nedorost N, Maderner A, Fragner K, Weissenböck H. 2011. Application of in-situ hybridization for the detection and identification of avian malaria parasites in paraffin wax-embedded tissues from captive penguins. Avian Pathology, 40(3), 315-320. [CrossRef] [Google Scholar]
  27. Dinhopl N, Nedorost N, Mostegl MM, Weissenbacher-Lang C, Weissenböck H. 2015. In situ hybridization and sequence analysis reveal an association of Plasmodium spp. with mortalities in wild passerine birds in Austria. Parasitology Research, 114(4), 1455-1462. [CrossRef] [PubMed] [Google Scholar]
  28. Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K, Newton PN, Pitisuttithum P, Smithyman A, White NJ. 2005. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Medecine, 2(8), e204. [CrossRef] [Google Scholar]
  29. Evans KJ, Hansen DS, van Rooijen N, Buckingham LA, Schofield L. 2006. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood, 107(3), 1192-1199. [CrossRef] [Google Scholar]
  30. Franke-Fayard B, Fonager J, Braks A, Khan SM, Janse CJ. 2010. Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria? PLoS Pathogens, 6(9), e1001032. [CrossRef] [PubMed] [Google Scholar]
  31. Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Büscher P, Que I, Löwik C, Voshol PJ, den Boer MA, van Duinen SG. 2005. Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11468-11473. [CrossRef] [PubMed] [Google Scholar]
  32. Frevert U, Nacer A, Cabrera M, Movila A, Leberl M. 2014. Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitology International, 63(1), 171-186. [CrossRef] [PubMed] [Google Scholar]
  33. Genrich GL, Guarner J, Paddock CD, Shieh W-J., Greer PW, Barnwell JW, Zaki SR. 2007. Fatal malaria infection in travelers: novel immunohistochemical assays for the detection of Plasmodium falciparum in tissues and implications for pathogenesis. American Journal of Tropical Medicine and Hygiene, 76(2), 251-259. [Google Scholar]
  34. Grau GE, Heremans H, Piguet P-F., Pointaire P, Lambert P-H., Billiau A, Vassalli P. 1989. Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proceedings of the National Academy of Sciences of the United States of America, 86(14), 5572-5574. [CrossRef] [PubMed] [Google Scholar]
  35. Greenwood BM. 1997. The epidemiology of malaria. Annals of Tropical Medicine and Parasitology, 91(7), 763-769. [CrossRef] [PubMed] [Google Scholar]
  36. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK. 2005. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science, 307(5706), 82-86. [CrossRef] [PubMed] [Google Scholar]
  37. Hearn J, Rayment N, Landon DN, Katz DR, de Souza JB. 2000. Immunopathology of cerebral malaria: morphological evidence of parasite sequestration in murine brain microvasculature. Infection and Immunity, 68(9), 5364-5376. [CrossRef] [PubMed] [Google Scholar]
  38. Helegbe GK, Huy NT, Yanagi T, Shuaibu MN, Yamazaki A, Kikuchi M, Yasunami M, Hirayama K. 2009. Rate of red blood cell destruction varies in different strains of mice infected with Plasmodium berghei-ANKA after chronic exposure. Malaria Journal, 8, 91. [CrossRef] [PubMed] [Google Scholar]
  39. Hrapkiewicz K, Colby L, Denison P. 2013. Clinical laboratory animal medicine: an introduction. 4th ed: John Wiley & Sons. [Google Scholar]
  40. Hunt NH, Grau GE. 2003. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends in Immunology, 24(9), 491-499. [CrossRef] [PubMed] [Google Scholar]
  41. Ilgūnas M, Bukauskaitė D, Palinauskas V, Iezhova TA, Dinhopl N, Nedorost N, Weissenbacher-Lang C, Weissenböck H, Valkiūnas G. 2016. Mortality and pathology in birds due to Plasmodium (Giovannolaia) homocircumflexum infection, with emphasis on the exoerythrocytic development of avian malaria parasites. Malaria Journal, 15, 256. [CrossRef] [PubMed] [Google Scholar]
  42. Julius M, Rebecca W, Francis K, Zipporah Naa, Viviene M, Muregi FW. 2013. Cytokine levels associated with experimental malaria pathology during Plasmodium berghei ANKA infection in a mouse model. Journal of Clinical Immunology, 5(1), 1-8. [Google Scholar]
  43. Kort W, Hekking-Weijma J, TenKate M, Sorm V, VanStrik R. 1998. A microchip implant system as a method to determine body temperature of terminally ill rats and mice. Laboratory Animals, 32(3), 260-269. [CrossRef] [PubMed] [Google Scholar]
  44. Kwiatkowski D, Sambou I, Twumasi P, Greenwood B, Hill A, Manogue K, Cerami A, Castracane J, Brewster D. 1990. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet, 336(8725), 1201-1204. [CrossRef] [PubMed] [Google Scholar]
  45. Lamb TJ, Brown DE, Potocnik AJ, Langhorne J. 2006. Insights into the immunopathogenesis of malaria using mouse models. Expert Reviews in Molecular Medicine, 8(06), 1-22. [Google Scholar]
  46. Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ. 2007. Malarial anemia: of mice and men. Blood, 110(1), 18-28. [CrossRef] [Google Scholar]
  47. Li C, Sanni LA, Omer F, Riley E, Langhorne J. 2003. Pathology of Plasmodium chabaudi chabaudi infection and mortality in interleukin-10-deficient mice are ameliorated by anti-tumor necrosis factor alpha and exacerbated by anti-transforming growth factor β antibodies. Infection and Immunity, 71(9), 4850-4856. [CrossRef] [PubMed] [Google Scholar]
  48. Lou J, Lucas R, Grau GE. 2001. Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clinical Microbiology Reviews, 14(4), 810-820. [CrossRef] [PubMed] [Google Scholar]
  49. Lyke K, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, Kone A, Harley R, Plowe C, Doumbo O. 2004. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12 (p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infection and Immunity, 72(10), 5630-5637. [CrossRef] [PubMed] [Google Scholar]
  50. Mackintosh CL, Beeson JG, Marsh K. 2004. Clinical features and pathogenesis of severe malaria. Trends in Parasitology, 20(12), 597-603. [CrossRef] [PubMed] [Google Scholar]
  51. Martins YC, Smith MJ, Pelajo-Machado M, Werneck GL, Lenzi HL, Daniel-Ribeiro CT, Carvalho LJdM. 2009. Characterization of cerebral malaria in the outbred Swiss Webster mouse infected by Plasmodium berghei ANKA. International Journal of Experimental Pathology, 90(2), 119-130. [CrossRef] [PubMed] [Google Scholar]
  52. McVay C, Klei T, Coleman S, Bosshardt S. 1990. A comparison of host responses of the Mongolian jird to infections of Brugia malayi and B. pahangi. American Journal of Tropical Medicine and Hygiene, 43(3), 266-273. [CrossRef] [Google Scholar]
  53. Mitchell AJ, Hansen AM, Hee L, Ball HJ, Potter SM, Walker JC, Hunt NH. 2005. Early cytokine production is associated with protection from murine cerebral malaria. Infection and Immunity, 73(9), 5645-5653. [CrossRef] [PubMed] [Google Scholar]
  54. Mons B, Janse C, Boorsma E, Van der Kaay H. 1985. Synchronized erythrocytic schizogony and gametocytogenesis of Plasmodium berghei in vivo and in vitro. Parasitology, 91(03), 423-430. [CrossRef] [Google Scholar]
  55. Neill A, Hunt N. 1992. Pathology of fatal and resolving Plasmodium berghei cerebral malaria in mice. Parasitology, 105(02), 165-175. [CrossRef] [PubMed] [Google Scholar]
  56. Ong KC, Badmanathan M, Devi S, Leong KL, Cardosa MJ, Wong KT. 2008. Pathologic characterization of a murine model of human enterovirus 71 encephalomyelitis. Journal of Neuropathology & Experimental Neurology, 67(6), 532-542. [CrossRef] [Google Scholar]
  57. Othoro C, Lal AA, Nahlen B, Koech D, Orago AS, Udhayakumar V. 1999. A low interleukin-10 tumor necrosis factor-α ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. Journal of Infectious Diseases, 179(1), 279-282. [CrossRef] [Google Scholar]
  58. Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WA, Religa AA, Robertson L, Sanders M, Ogun SA. 2014. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biology, 12, 86. [CrossRef] [PubMed] [Google Scholar]
  59. Porthouse KH, Chirgwin SR, Coleman SU, Taylor HW, Klei TR. 2006. Inflammatory responses to migrating Brugia pahangi third-stage larvae. Infection and Immunity, 74(4), 2366-2372. [CrossRef] [PubMed] [Google Scholar]
  60. Randall LM, Amante FH, McSweeney KA, Zhou Y, Stanley AC, Haque A, Jones MK, Hill GR, Boyle GM, Engwerda CR. 2008. Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities. Infection and Immunity, 76(7), 3312-3320. [CrossRef] [PubMed] [Google Scholar]
  61. Rao RU, Klei TR. 2006. Cytokine profiles of filarial granulomas in jirds infected with Brugia pahangi. Filaria Journal, 5, 3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  62. Riley E, Wahl S, Perkins D, Schofield L. 2006. Regulating immunity to malaria. Parasite Immunology, 28 (1-2), 35-49. [CrossRef] [PubMed] [Google Scholar]
  63. Sanni LA, Fonseca LF, Langhorne J. 2002. Mouse models for erythrocytic-stage malaria. Malaria Methods and Protocols: Methods and Protocols, 72, 57-76. [CrossRef] [Google Scholar]
  64. Sanni LA, Thomas SR, Tattam BN, Moore DE, Chaudhri G, Stocker R, Hunt NH. 1998. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria. American Journal of Pathology, 152(2), 611. [Google Scholar]
  65. Schofield L, Grau GE. 2005. Immunological processes in malaria pathogenesis. Nature Reviews Immunology, 5(9), 722-735. [CrossRef] [PubMed] [Google Scholar]
  66. Sergent E, Poncet A. 1951. On the long duration of latent metacritic infection in experimental malaria of Plasmodium berghei in North African Meriones. Archives de l'Institut Pasteur d'Algérie, 29(4), 269-272. [Google Scholar]
  67. Sergent E, Poncet A. 1956. Note on the innate resistance to Plasmodium berghei in gerbils of North Africa. Archives de l'Institut Pasteur d'Algérie, 34(4), 494. [Google Scholar]
  68. Stephens R, Culleton RL, Lamb TJ. 2012. The contribution of Plasmodium chabaudi to our understanding of malaria. Trends in Parasitology, 28 2), 73-82. [CrossRef] [PubMed] [Google Scholar]
  69. Stevenson MM, Riley EM. 2004. Innate immunity to malaria. Nature Reviews Immunology, 4(3), 169-180. [CrossRef] [PubMed] [Google Scholar]
  70. Su Z, Stevenson MM. 2000. Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infection and Immunity, 68(8), 4399-4406. [CrossRef] [PubMed] [Google Scholar]
  71. Thawani N, Tam M, Bellemare M-J., Bohle DS, Olivier M, de Souza JB, Stevenson MM. 2013. Plasmodium products contribute to severe malarial anemia by inhibiting erythropoietin-induced proliferation of erythroid precursors. Journal of Infectious Diseases, jit417. [Google Scholar]
  72. Weiss ML. 1976. Plasmodium berghei: Adaptation of a mouse-adapted strain to the Mongolian jird (Meriones unguiculatus); infectivity and immunogenicity. Experimental Parasitology, 40(1), 103-111. [CrossRef] [PubMed] [Google Scholar]
  73. Wellde B, Briggs N, Sadun E. 1966. Susceptibility to Plasmodium berghei: parasitological biochemical and hematological studies in laboratory and wild mammals. Military Medicine, 131(Suppl. 9), 859-869. [Google Scholar]
  74. Wenisch C, Linnau KF, Looaresuwan S, Rumpold H. 1999. Plasma levels of the interleukin-6 cytokine family in persons with severe Plasmodium falciparum malaria. Journal of Infectious Diseases, 179(3), 747-750. [CrossRef] [Google Scholar]
  75. WHO. 2011. Haemoglobin concentrations for the diagnosis of anemia and assessment of severity. Vitamin and Mineral Nutrition Information System. World Health Organization: Geneva. [Google Scholar]
  76. WHO. 2016. World Malaria Report 2015,, Editor. World Health Organization. [Google Scholar]
  77. Wu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, Yu W, Qi Y, Zeituni AE, Nair SC. 2014. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proceedings of the National Academy of Sciences of the United States of America, 111(4), E511-E520. [CrossRef] [PubMed] [Google Scholar]
  78. Yamaoka Y, Yamauchi K, Ota H, Sugiyama A, Ishizone S, Graham DY, Maruta F, Murakami M, Katsuyama T. 2005. Natural history of gastric mucosal cytokine expression in Helicobacter pylori gastritis in Mongolian gerbils. Infection and Immunity, 73(4), 2205-2212. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.