Open Access
Volume 23, 2016
Article Number 41
Number of page(s) 8
Published online 14 September 2016
  1. Adams M, Alther W, Kessler M, Kluge M, Hamburger M. 2011. Malaria in the Renaissance: remedies from European herbals from the 16th and 17th century. Journal of Ethnopharmacology, 133(2), 278–288. [CrossRef] [PubMed] [Google Scholar]
  2. Aktas ES, Imre S, Ersoy L. 2001. Characterization and lime treatment of olive mill wastewater. Water Research, 35(9), 2336–2340. [CrossRef] [PubMed] [Google Scholar]
  3. Al-Mathal EM, Alsalem AM. 2012. Pomegranate (Punica granatum) peel is effective in a murine model of experimental Cryptosporidium parvum. Experimental Parasitology, 131(3), 350–357. [CrossRef] [PubMed] [Google Scholar]
  4. Amiot MJ, Fleuriet A, Macheix JJ. 1989. Accumulation of oleuropein derivatives during olive maturation. Phytochemistry, 28(1), 67–69. [CrossRef] [Google Scholar]
  5. Barbera AC, Maucieri C, Cavallaro V, Ioppolo A, Spagna G. 2013. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agricultural Water Management, 119, 43–53. [CrossRef] [Google Scholar]
  6. Boskou D. 2006. Olive oil: chemistry and technology, Second Edition. AOCS Press: Urbana, IL, USA. p. 1–268. [Google Scholar]
  7. Brenes M, Garcia A, Garcia P, Garrido A. 2000. Rapid and complete extraction of phenols from olive oil and determination by means of a coulometric electrode array system. Journal of Agricultural and Food Chemistry, 48(11), 5178–5183. [CrossRef] [PubMed] [Google Scholar]
  8. Brenes M, Garcia A, Garcia P, Garrido A. 2001. Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. Journal of Agricultural and Food Chemistry, 49(11), 5609–5614. [Google Scholar]
  9. Charoenprasert S, Mitchell A. 2012. Factors influencing phenolic compounds in table olives (Olea europaea). Journal of Agricultural and Food Chemistry, 60(29), 7081–7095. [CrossRef] [PubMed] [Google Scholar]
  10. Chobot V. 2010. Simultaneous detection of pro- and antioxidative effects in the variants of the deoxyribose degradation assay. Journal of Agricultural and Food Chemistry, 58(4), 2088–2094. [CrossRef] [PubMed] [Google Scholar]
  11. Chobot V, Kubicova L, Bachmann G, Hadacek F. 2013. Versatile redox chemistry complicates antioxidant capacity assessment: flavonoids as milieu-dependent anti- and pro-oxidants. International Journal of Molecular Sciences, 14(6), 11830–11841. [CrossRef] [PubMed] [Google Scholar]
  12. Chobot V, Hadacek F, Kubicova L. 2014. Effects of selected dietary secondary metabolites on reactive oxygen species production caused by iron(II) autoxidation. Molecules, 19(12), 20023–20033. [CrossRef] [PubMed] [Google Scholar]
  13. De Pablos LM, dos Santos MF, Montero E, Garcia-Granados A, Parra A, Osuna A. 2010. Anticoccidial activity of maslinic acid against infection with Eimeria tenella in chickens. Parasitology Research, 107(3), 601–604. [CrossRef] [PubMed] [Google Scholar]
  14. European Commission. 2012. SAFEWASTES [cited 13 May 2016]; Available from: [Google Scholar]
  15. Eurostat, European Commission. 2016. Your key to European statistics [cited 13 May 2016]; Available from: [Google Scholar]
  16. Food and Agriculture Organization of the United Nations – Statistics Division, Economic and Social Development Department. 2015. [cited 13 May 2016]; Available from: [Google Scholar]
  17. Friedman M, Henika PR, Levin CE. 2013. Bactericidal activities of health-promoting, food-derived powders against the foodborne pathogens Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. Journal of Food Science, 78(2), M270–M275. [CrossRef] [PubMed] [Google Scholar]
  18. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N. 2012. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.) – a review. International Journal of Molecular Sciences, 13(3), 3291–3340. [Google Scholar]
  19. Juan EM, Planas JM, Ruiz-Gutierrez V, Daniel H, Wenzel U. 2008. Antiproliferative and apoptosis-inducing effects of maslinic and oleanolic acids, two pentacyclic triterpenes from olives, on HT-29 colon cancer cells. British Journal of Nutrition, 100(1), 36–43. [Google Scholar]
  20. Kayser O, Kiderlen AF, Croft SL. 2003. Natural products as antiparasitic drugs. Parasitology Research, 90(Suppl 2), S55–S62. [CrossRef] [PubMed] [Google Scholar]
  21. Komilis DP, Karatzas E, Halvadakis CP. 2005. The effect of olive mill wastewater on seed germination after various pretreatment techniques. Journal of Environmental Management, 74(4), 339–348. [CrossRef] [PubMed] [Google Scholar]
  22. Mead J, McNair N. 2006. Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiology Letters, 259(1), 153–157. [CrossRef] [PubMed] [Google Scholar]
  23. Molina-Alcaide E, Yáñez-Ruiz DR. 2008. Potential use of olive by-products in ruminant feeding: a review. Animal Feed Science and Technology, 147(1–3), 247–264. [CrossRef] [Google Scholar]
  24. Moneriz C, Marin-Garcia P, Bautista JM, Diez A, Puyet A. 2011. Parasitostatic effect of maslinic acid. II. Survival increase and immune protection in lethal Plasmodium yoelii-infected mice. Malaria Journal, 10, 103. [CrossRef] [PubMed] [Google Scholar]
  25. Moneriz C, Marin-Garcia P, Garcia-Granados A, Bautista JM, Diez A, Puyet A. 2011. Parasitostatic effect of maslinic acid. I. Growth arrest of Plasmodium falciparum intraerythrocytic stages. Malaria Journal, 10, 82. [CrossRef] [PubMed] [Google Scholar]
  26. Moneriz C, Mestres J, Bautista JM, Diez A, Puyet A. 2011. Multi-targeted activity of maslinic acid as an antimalarial natural compound. FEBS Journal, 278(16), 2951–2961. [CrossRef] [Google Scholar]
  27. Muktadirul Bari Chowdhury AKM, Akratos CS, Vayenas DV, Pavlou S. 2013. Olive mill waste composting: a review. International Biodeterioration and Biodegradation, 85, 108–119. [CrossRef] [Google Scholar]
  28. Najdrowski M, Heckeroth AR, Wackwitz C, Gawlowska S, Mackenstedt U, Kliemt D, Daugschies A. 2007. Development and validation of a cell culture based assay for in vitro assessment of anticryptosporidial compounds. Parasitology Research, 101(1), 161–167. [CrossRef] [PubMed] [Google Scholar]
  29. Ndjonka D, Rapado LN, Silber AM, Liebau E, Wrenger C. 2013. Natural products as a source for treating neglected parasitic diseases. International Journal of Molecular Sciences, 14(2), 3395–3439. [CrossRef] [PubMed] [Google Scholar]
  30. Perrucci S, Fichi G, Buggiani C, Rossi G, Flamini G. 2006. Efficacy of mangiferin against Cryptosporidium parvum in a neonatal mouse model. Parasitology Research, 99(2), 184–188. [CrossRef] [PubMed] [Google Scholar]
  31. Rochfort S, Parker AJ, Dunshea FR. 2008. Plant bioactives for ruminant health and productivity. Phytochemistry, 69(2), 299–322. [CrossRef] [PubMed] [Google Scholar]
  32. Rupic V, Jerkovic I, Bozac R, Glowattzky D, Muzic S, Hrabak V. 1997. Olive by-products in pig fattening. Acta Veterinaria Hungarica, 45(1), 53–66. [PubMed] [Google Scholar]
  33. Shahiduzzaman M, Daugschies A. 2012. Therapy and prevention of cryptosporidiosis in animals. Veterinary Parasitology, 188(3–4), 203–214. [Google Scholar]
  34. Shahiduzzaman M, Dyachenko V, Khalafalla RE, Desouky AY, Daugschies A. 2009. Effects of curcumin on Cryptosporidium parvum in vitro. Parasitology Research, 105(4), 1155–1161. [CrossRef] [PubMed] [Google Scholar]
  35. Shamsi IH, Hussain N, Jiang L. 2012. Agro-industrial by-products utilization in animal nutrition, in Technological Innovations in Major World Oil Crops, Volume 2: Perspectives. Springer: New York, NY, USA. p. 209–220. [CrossRef] [Google Scholar]
  36. Slifko TR, Friedman D, Rose JB, Jakubowski W. 1997. An in vitro method for detecting infectious Cryptosporidium oocysts with cell culture. Applied Environmental Microbiology, 63(9), 3669–3675. [Google Scholar]
  37. Slifko TR, Huffman DE, Rose JB. 1999. A most-probable-number assay for enumeration of infectious Cryptosporidium parvum oocysts. Applied Environmental Microbiology, 65(9), 3936–3941. [Google Scholar]
  38. Smith HV, Corcoran GD. 2004. New drugs and treatment for cryptosporidiosis. Current Opinion in Infectious Diseases, 17(6), 557–564. [CrossRef] [PubMed] [Google Scholar]
  39. Stachulski AV, Berry NG, Lilian Low AC, Moores SL, Row E, Warhurst DC, Adagu IS, Rossignol JF. 2006. Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo. Journal of Medicinal Chemistry, 49(4), 1450–1454. [CrossRef] [PubMed] [Google Scholar]
  40. Stockhammer S, Stolze K, Rohr-Udilova N, Chizzola R, Zitterl-Eglseer K, Franz C. 2009. Antioxidant activity of phytogenous industrial waste and derived extracts for the production of feed and food additives. International Journal of Food Science and Technology, 44(4), 702–710. [CrossRef] [Google Scholar]
  41. Tafesh A, Najami N, Jadoun J, Halahlih F, Riepl H, Azaizeh H. 2011. Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evidence-Based Complementary and Alternative Medicine, 2011, 431021. [CrossRef] [Google Scholar]
  42. Taklimi SM, Ghahri H, Pour-Reza J, Fazaeli H, Lotfollahian H. 1999. Investigation into the possible use of olive pulp in commercial layer diets. British Poultry Science, 40(Suppl), S40–S41. [CrossRef] [PubMed] [Google Scholar]
  43. Teichmann K, Kuliberda M, Schatzmayr G, Hadacek F, Joachim A. 2012. In vitro determination of anticryptosporidial activity of phytogenic extracts and compounds. Parasitology Research, 111(1), 231–240. [CrossRef] [PubMed] [Google Scholar]
  44. United Nations Environment Programme. 1992. Changing Consumption Patterns. Chapter 4, Agenda 21. United Nations Environment Programme: Nairobi, Kenya. [cited 13 May 2016]; Available from: [Google Scholar]
  45. Weyl-Feinstein S, Markovics A, Eitam H, Orlov A, Yishay M, Agmon R, Miron J, Izhaki I, Shabtay A. 2014. Short communication: effect of pomegranate-residue supplement on Cryptosporidium parvum oocyst shedding in neonatal calves. Journal of Dairy Science, 97(9), 5800–5805. [CrossRef] [PubMed] [Google Scholar]
  46. Woods KM, Nesterenko MV, Upton SJ. 1996. Efficacy of 101 antimicrobials and other agents on the development of Cryptosporidium parvum in vitro. Annals of Tropical Medicine and Parasitology, 90(6), 603–615. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.