Issue
Parasite
Volume 21, 2014
Novel Approaches to the Control of Parasites in Goats and Sheep. Invited editors: Hervé Hoste, Smaragda Sotiraki and Michel Alvinerie
Article Number 56
Number of page(s) 15
DOI https://doi.org/10.1051/parasite/2014055
Published online 29 October 2014
  1. Akey JM. 2009. Constructing genome maps of positive selection in humans: where do we go from here? Genome Research, 19, 711–722. [CrossRef] [PubMed] [Google Scholar]
  2. Al Kalaldeh M, Gibson JP, Van der Werf JHJ, Gondro C. 2013. Partitioning the genetic variance into genomic and pedigree components for parasite resistance in sheep. Proceeding of Association of Advances in Animal Breeding and Genetics, 20, 412–415. [Google Scholar]
  3. Albers GA, Gray GD, Piper LR, Barker JS, Le Jambre LF, Barger IA. 1987. The genetics of resistance and resilience to Haemonchus contortus infection in young Merino sheep. International Journal for Parasitology, 17(7), 1355–1363. [CrossRef] [PubMed] [Google Scholar]
  4. Amarante AFT, Bricarello PA, Rocha RA, Gennari RM. 2004. Resistance of Santa Inês, Suffolk and Ile de France sheep to naturally acquired gastrointestinal nematode infections. Veterinary Parasitology, 120(2), 91–106. [CrossRef] [PubMed] [Google Scholar]
  5. Amarante AFT, Susin I, Rocha RA, Silva MB, Mendes CQ, Pires AV. 2009. Resistance of Santa Inês and crossbred ewes to naturally acquired gastrointestinal nematode infections. Veterinary Parasitology, 165(120), 273–280. [CrossRef] [PubMed] [Google Scholar]
  6. Andersson L. 1996. Major histocompatibility complex evolution, in The major histocompatibility complex region of domestic animal species. Schook LB, Lamont SJ, Editors. CRC Press: Boca Raton, Florida. p. 1–15. [Google Scholar]
  7. Archie EA, Ezenwa VO. 2011. Population genetic structure and history of a generalist parasite infecting multiple sympatric host species. International Journal for Parasitology, 41, 89–98. [CrossRef] [PubMed] [Google Scholar]
  8. Baker RL, Mugambi JM, Audho JO, Carles AB, Thorpe W. 2004. Genotype by environment interactions for productivity and resistance to gastro-intestinal nematode parasites in Red Maasai and Dorper sheep. Animal Science, 79, 343–353. [Google Scholar]
  9. Baker RL, Nagda S, Rodriguez-Zas SL, Southey BR, Audho JO, Aduda EO, Thorpe W. 2003. Resistance and resilience to gastro-intestinal nematode parasites and relationships with productivity of Red Maasai, Dorper and Red Maasai × Dorper crossbred lambs in the sub-humid tropics. Animal Science, 76, 119–136. [Google Scholar]
  10. Baker RL. 1998. Genetic resistance to endoparasites in sheep and goats: a review of genetic resistance to gastrointestinal nematode parasites in sheep and goats in the tropics and evidence for resistance in some sheep and goat breeds in sub-humid coastal Kenya. Animal Genetic Resources Information, 24, 13–30. [CrossRef] [Google Scholar]
  11. Ballingall KT, Mckeever DJ. 2005. Conservation of promoter, coding and intronic regions of the non-classical MHC class II DYA genes suggests evolution under functional constraints. Animal Genetics, 36(3), 237–239. [CrossRef] [PubMed] [Google Scholar]
  12. Beh KJ, Hulme DJ, Callaghan MJ. 2002. A genome scan for quantitative trait loci affecting resistance to Trichostrongylus colubriformis in sheep. Animal Genetics, 33, 97–106. [CrossRef] [PubMed] [Google Scholar]
  13. Beilharz RG, Luxford BG, Wilkinson JL. 1993. Quantitative genetics and evolution: is our understanding of genetics sufficient to explain evolution? Journal of Animal Breeding and Genetics, 110, 161–170. [CrossRef] [Google Scholar]
  14. Benevides MV, Sacco AMS, Weimer TA. 2002. Marcadores genéticos como indicadores de resistência a parasitos gastrintestinais em ovinos. Embrapa Pecuária Sul (Documentos 31): Bagé. [Google Scholar]
  15. Beraldi D, McRae AF, Gratten J, Pilkington JG, Slate J, Visscher PM, Pemberton JM. 2007. Quantitative trait loci (QTL) mapping of resistance to strongyles and coccidia in the free-living Soay sheep (Ovis aries). International Journal for Parasitology, 37, 121–129. [CrossRef] [PubMed] [Google Scholar]
  16. Beraldi D, McRae AF, Gratten J, Slate J, Visscher PM, Pemberton JM. 2006. Development of a linkage map and mapping of phenotypic polymorphisms in a free-living population of Soay sheep (Ovis aries). Genetics, 173, 1521–1537. [CrossRef] [PubMed] [Google Scholar]
  17. Bishop SC, Morris CA. 2007. Genetics of disease resistance in sheep and goats. Small Ruminant Research, 70, 48–59. [CrossRef] [Google Scholar]
  18. Bishop SC, Woolliams JA. 2004. Genetic approaches and technologies for improving the sustainability of livestock production. Journal of the Science of Food and Agriculture, 84(9), 911–919. [CrossRef] [Google Scholar]
  19. Bishop SC, Woolliams JA. 2010. On the genetic interpretation of disease data. PLoS One, 5, e8940. [CrossRef] [PubMed] [Google Scholar]
  20. Bishop SC. 2012. A consideration of resistance and tolerance for ruminant nematode infections. Frontiers in Genetics, 3, 1–7. [PubMed] [Google Scholar]
  21. Bishop SC. 2012. Possibilities to breed for resistance to nematode parasite infections in small ruminants in tropical production systems. Animal, 6(5), 741–747. [CrossRef] [PubMed] [Google Scholar]
  22. Bisset SA, Morris CA. 1996. Feasibility and Implications of breeding sheep for resilience to nematode challenge. International Journal for Parasitology, 26(8/9), 857–868. [CrossRef] [PubMed] [Google Scholar]
  23. Blattman AN, Hulme DJ, Kinghorn BP. 1993. A search for associations between major histocompatibility complex restriction fragment length polymorphism bands and resistance to Haemonchus contortus infection in sheep. Animal Genetics, 24, 277–282. [CrossRef] [PubMed] [Google Scholar]
  24. Blouin MS, Yowell CA, Courtney CH, Dame JB. 1995. Host movement and the genetic structure of populations of parasitic nematodes. Genetics, 141, 1007–1014. [PubMed] [Google Scholar]
  25. Bot J, Kaelsson LJE, Greef J. 2004. Association of the MHC with production traits in Merino ewes. Livestock Production Science, 86, 85–91. [CrossRef] [Google Scholar]
  26. Braisher TL, Gemmell NJ, Grenfell BT, Amos W. 2004. Host isolation and patterns of genetic variability in three populations of Teladorsagia from sheep. International Journal for Parasitology, 34, 1197–1204. [CrossRef] [PubMed] [Google Scholar]
  27. Brasil BSAF, Nunes RL, Bastianetto E, Drummond MG, Carvalho DC, Leite RC, Molento MB, Oliveira DAA. 2012. Genetic diversity patterns of Haemonchus placei and Haemonchus contortus populations isolated from domestic ruminants in Brazil. International Journal for Parasitology, 42(5), 469–479. [CrossRef] [PubMed] [Google Scholar]
  28. Bricarello PA, Amarante AFT, Rocha RA. 2005. Influence of dietary protein supply on resistance to experimental infections with Haemonchus contortus in Ile de France an Santa Inês lambs. Veterinary Parasitology, 134(11), 99–109. [CrossRef] [PubMed] [Google Scholar]
  29. Brown EA, Pilkington JG, Nussey DH, Watt KA, Hayward AD, Tucker R, Graham AL, Paterson S, Beraldi D, Pemberton JM, Slate J. 2013. Detecting genes for variation in parasite burden and immunological traits in a wild population: testing the candidate gene approach. Molecular Ecology, 22(3), 757–773. [CrossRef] [PubMed] [Google Scholar]
  30. Bueno MS, Cunha EA, Veríssimo CJ, Santos LE, Lara MAC, Oliveira SM, Spósito Filha E, Rebouças MM. 2002. Infección por nematódeos em razas de ovejas carnicas criadas intensivamente en la región del sudeste del Brasil. Archivos de Zootecnia, 51, 273–280. [Google Scholar]
  31. Cardon LR, Bell JI. 2001. Association study designs for complex diseases. Nature Review Genetics, 2, 91–99. [CrossRef] [Google Scholar]
  32. Carroll S. 2000. Endless forms: the evolution of gene regulation and morphological diversity. Cell, 101, 577–580. [CrossRef] [PubMed] [Google Scholar]
  33. Castillo JAF, Medna RDM, Villalobos JMB, Gayosso-Vázquez A. 2010. Association between major histocompatibility complex microsatellites, fecal egg count, blood packed cell volume and blood eosinophilia in Pelibuey sheep infected with Haemonchus contortus. Veterinary Parasitology, 177(3–4), 339–344. [CrossRef] [PubMed] [Google Scholar]
  34. Castillo-Juarez H, Oltenacu PA, Blake RW, McCulloch CE, Cienfuegos-Rivas EG. 2000. Effect of herd environment on the genetic and phenotypic relationships among milk yield, conception rate, and somatic cell score in Holstein cattle. Journal of Dairy Science, 83, 807–814. [CrossRef] [PubMed] [Google Scholar]
  35. Cerutti MC, Citterio CV, Bazzocchi C, Epis S, D’Amelio S, Ferrari N, Lanfranchi P. 2010. Genetic variability of Haemonchus contortus (Nematoda: Trichostrongyloidea) in alpine ruminant host species. Journal of Helminthology, 84, 276–283. [CrossRef] [PubMed] [Google Scholar]
  36. Charon K, Moskwa B, Kuryl J, Gruzcynska J, Rutkowski R. 2001. Relationship between polymorphism in locus OMHC1(MHC class I) and resistance to nematodes in Polish Heatherhead sheep. Animal Science Papers and Reports, 19(4), 285–292. [Google Scholar]
  37. Coltman DW, Wilson K, Pilkington JG, Stear MJ, Pemberton JM. 2001. A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally parasitized population of Soay sheep. Parasitology, 122, 571–582. [CrossRef] [PubMed] [Google Scholar]
  38. Crawford AM, Paterson KA, Dodds KG, Tascon CD, Williamson PA, Thomson MR, Bisset SA, Beattie AE, Greer GJ, Green RS, Wheeler R, Shaw RJ, Knowler K, McEwan J. 2006. Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees. BMC Genomics, 7, 178. [CrossRef] [PubMed] [Google Scholar]
  39. Dame JB, Blouin MS, Courtney CH. 1993. Genetic structure of populations of Ostertagia ostertagi. Veterinary Parasitology, 46, 55–62. [CrossRef] [PubMed] [Google Scholar]
  40. Davies G, Stear MJ, Benothman M, Abuagob O, Kerr A, Mitchell S, Bishop SC. 2006. Quantitative trait loci associated with parasitic infection in Scottish Blackface sheep. Heredity, 96, 252–258. [CrossRef] [PubMed] [Google Scholar]
  41. De Gotari MJ, Freking BA, Cuthbertson RP. 1998. A second-generation linkage map of the sheep genome. Mammalian Genome, 9, 204–209. [CrossRef] [Google Scholar]
  42. Díaz S, Ripoli MV, Peral-García P. 2005. Marcadores genéticos para resistência y susceptibilidad a enfermedades infecciosas en animales domésticos. Los loci del complejo principal de histocompatibilidade (mhc) como genes candidatos. Analecta. Veterinaria, 25(1), 40–52. [Google Scholar]
  43. Diez-Tascón C, Mcdonald PA, Doods KG. 2002. A screen of chromosome 1 for QTL affecting nematode resistance in an ovine outcross population, in Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August, 2002. Communication 13-37. p. 1–4. [Google Scholar]
  44. Doeschl-Wilson AB, Kyriazakis I. 2012. Should we aim for genetic improvement in host resistance or tolerance to infectious pathogens? Frontiers in Genetics, 3, 1–2. [PubMed] [Google Scholar]
  45. Douch PGC, Green RS, Morris CA, McEwan JC, Windon RG. 1996. Phenotypic markers for selection of nematode-resistant sheep. International Journal for Parasitology, 26(8–9), 899–911. [CrossRef] [PubMed] [Google Scholar]
  46. Eady SJ, Woolaston RR, Lewer RP. 1998. Resistance to nematode parasites in Merino sheep: correlation with production traits. Australian Journal of Agricultural Research, 49, 1201–1211. [CrossRef] [Google Scholar]
  47. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews Genetics, 11, 446–450. [CrossRef] [PubMed] [Google Scholar]
  48. Eysker M, Ploeger HW. 2000. Value of present diagnostic methods for gastrointestinal nematode infections in ruminants. Parasitology, 120, 109–119. [CrossRef] [Google Scholar]
  49. FAO. 1999. Opportunities for incorporating genetic elements into the management of farm animal diseases: policy issues, in Background Study Paper Number 18. Commission on Genetic Resources for Food and Agriculture. Bishop S, de Jong M, Gray D, Editors. FAOSTAT: Rome (available at http://faostat.fao.org). [Google Scholar]
  50. Geldermann H, Mir MR, Kuss AW. 2006. OLA-DRB1microssatellite variants are associated with ovine growth and reproduction traits. Genetic Selection and Evolution, 38, 431–444. [CrossRef] [Google Scholar]
  51. Gibson JP, Bishop SC. 2005. Use of molecular markers to enhance resistance of livestock to disease: a global approach. Revue Scientifique et Technique (International Office of Epizootics), 24(1), 343–353. [PubMed] [Google Scholar]
  52. Gicheha MG, Kosgey IS, Bebe BO, Kahi AK. 2005. Economic values for resistance to gastrointestinal helminths in meat sheep in Kenya. Journal of Animal Breeding and Genetics, 122(3), 165–171. [CrossRef] [Google Scholar]
  53. Gilleard JS. 2013. Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance. Parasitology, 140, 1506–1522. [CrossRef] [PubMed] [Google Scholar]
  54. Goddard ME, Beilharz RG. 1997. Natural selection and animal breeding. Proceedings of the 3rd International Congress SABRAO, Canberra, Australia. p. 4.19–4.21. [Google Scholar]
  55. Goddard ME, Hayes BJ. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics, 10, 381–391. [CrossRef] [PubMed] [Google Scholar]
  56. Gonzalez-Recio O, Gianola D, Rosa G, Weigel K, Kranis A. 2009. Genome-assisted prediction of a quantitative trait measured in parents and progeny: application to food conversion rate in chickens. Genetics Selection Evolution, 41, 3. [CrossRef] [Google Scholar]
  57. Gruszczynska J, Charon KM, Swiderek W. 2002. Microsatellite polymorphism in locus OMHC1 (MHC Class I) in Polish Heath sheep and Polish Lowland sheep (Zelazna variety). Journal of Applied Genetics, 43(2), 217–222. [PubMed] [Google Scholar]
  58. Gruszczynska J. 1999. Polymorphism of the OLADRB1 (MHC Class II) gene in German Merino sheep. Annals of Warsaw Agricultural University – SGSW, Animal Science, 35, 125–132. [Google Scholar]
  59. Guy SZY, Thomson PC, Hermesch S. 2012. Selection of pigs for improved coping with health and environmental challenges: breeding for resistance or tolerance? Frontiers in Genetics, 3, 1–9. [PubMed] [Google Scholar]
  60. Harris BL, Johnson DL. 2010. Genomic predictions for New Zealand dairy bulls and integration with national genetic evaluation. Journal of Dairy Science, 93, 1243–1252. [CrossRef] [PubMed] [Google Scholar]
  61. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. 2009. Invited review: genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 92, 433–443. [CrossRef] [PubMed] [Google Scholar]
  62. Hulme DJ, Nicholas FW, Windon RG. 1993. The MHC class II region and resistance to an intestinal parasite in sheep. Journal of Animal Breeding and Genetics, 110, 459–472. [CrossRef] [Google Scholar]
  63. Janem M, Weimann C, Gauly M. 2002. Association between infections with Haemonchus contortus and genetic markers on ovine chromosome 20, in Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August, 2002. Communication 13–37. p. 1–4. [Google Scholar]
  64. Kaplan RM. 2004. Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology, 20(10), 477–481. [CrossRef] [PubMed] [Google Scholar]
  65. Keane OM, Dodds KG, Crawford AM, McEwan JC. 2007. Transcriptional profiling of Ovis aries identifies Ovar-DQA1 allele frequency differences between nematode-resistant and susceptible selection lines. Physiological Genomics, 30(3), 253–261. [CrossRef] [PubMed] [Google Scholar]
  66. Kearney JF, Schutz MM, Boettcher PJ. 2004. Genotype × environment interaction for grazing vs. confinement II. Health and reproduction traits. Journal of Dairy Science, 87, 510–516. [CrossRef] [PubMed] [Google Scholar]
  67. Kemper KE, Emery DL, Bishop SC, Oddy H, Hayes BJ, Dominik S, Henshall JM, Goddard ME. 2011. The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections. Genetic Research, 93, 203–219. [CrossRef] [Google Scholar]
  68. Kemper KE, Goddard ME, Bishop SC. 2013. Adaptation of gastrointestinal nematode parasites to host genotype: single locus simulation models. Genetics Selection Evolution, 45(14), 1–14. [CrossRef] [Google Scholar]
  69. Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR. 2012. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10(2), e1001258. [CrossRef] [PubMed] [Google Scholar]
  70. Kijas JW, Townley D, Dairymple BP, Heaton MP, Maddox JF, McGrath A, Wilson P, Ingersoll RG, McCulloch R, McWilliam S, Tang D, McEwan J, Cockett N, Oddy VH, Nicholas FW, Raadsma H. 2009. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One, 4(3), e4668. [CrossRef] [PubMed] [Google Scholar]
  71. Kloosterman A, Parmentier HK, Ploeger HW. 1992. Breeding cattle and sheep for resistance to gastrointestinal nematodes. Parasitology Today, 8, 330–335. [CrossRef] [Google Scholar]
  72. Kulski JK, Shiina T, Anzai T. 2002. Comparative genome analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunology Review, 190, 95–122. [CrossRef] [Google Scholar]
  73. Lewis CRG, Ait-Ali T, Clapperton M, Archibald AL, Bishop S. 2007. Genetic perspectives on host responses to porcine reproductive and respiratory syndrome (PRRS). Viral Immunology, 20(3), 343–357. [CrossRef] [PubMed] [Google Scholar]
  74. Lôbo RNB, Pereira IDC, Facó O. 2011. Economic values for production traits of Morada Nova meat sheep in a pasture based production system in semi-arid Brazil. Small Ruminant Research, 96, 93–100. [CrossRef] [Google Scholar]
  75. Lôbo RNB, Vieira LS, Oliveira AA. 2009. Genetic parameters for fecal egg count, packed cell volume and body weight of Santa Inês lambs. Genetics and Molecular Biology, 32(2), 288–294. [PubMed] [Google Scholar]
  76. Louvandini H, Veloso CFM, Paludo GR. 2006. Influence of protein supplementation on the resistance and resilience on young hair sheep naturally infected with gastrointestinal nematodes during rainy and dry seasons. Veterinary Parasitology, 137(4), 103–111. [CrossRef] [PubMed] [Google Scholar]
  77. Marshall K, Maddox JF, Lee SH, Zhang Y, Kahn L, Graser HU, Gondro C, Walkden-Brown SW, Van der Werf JHJ. 2009. Genetic mapping of quantitative trait loci for resistance to Haemonchus contortus in sheep. Animal Genetics, 40(3), 262–272. [CrossRef] [PubMed] [Google Scholar]
  78. Martínez-Valladares M, Varadel rio MP, Cruz-rojo MA, Rojovázquez FA. 2005. Genetic resistance to Teladorsagia circumcincta: IgA and parameters at slaughter in Churra sheep. Parasite Immunology, 27(6), 213–218. [CrossRef] [PubMed] [Google Scholar]
  79. Mattick JS, Makunin IV. 2006. Non-coding RNA. Human Molecular Genetics, 15(1), R17–R29. [CrossRef] [PubMed] [Google Scholar]
  80. McManus C, Louvandini H, Gugel R. 2011. Skin and coat traits in sheep in Brazil and their relation with heat tolerance. Tropical Animal Health and Production, 43, 121–126. [CrossRef] [PubMed] [Google Scholar]
  81. McManus C, Louvandini H, Paiva SR, Oliveira AA, Azevedo HC, Melo CB. 2009. Genetic factors of sheep affecting gastrointestinal parasite infections in the Distrito Federal, Brazil. Veterinary Parasitology, 166, 308–313. [CrossRef] [PubMed] [Google Scholar]
  82. McManus C, Paiva SR, Araújo RO. 2010. Genetics and breeding of sheep in Brazil. Revista Brasileira de Zootecnia, 39(Suppl. Esp.), 236–246. [CrossRef] [Google Scholar]
  83. McManus C, Pinto BF, Martins RFS, Louvandini H, Paiva SR, Braccini Neto J, Paim TP. 2011. Selection objectives and criteria for sheep in Central Brazil. Revista Brasileira de Zootecnia, 40(12), 2713–2720. [Google Scholar]
  84. McManus CM, Dallago BSL, Louvandini H, Melo CB, Seixas LS, Oliveira FJG. 2013. Gastrointestinal parasitism in sheep kept on Andropogon and Panicum pastures in the Federal District, Brazil. Journal of Animal Science Advances, 3(5), 214–218. [Google Scholar]
  85. McRae KM, McEwan JC, Dodds KG, Gemmell NJ. 2014. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genomics, 15, 637. [CrossRef] [PubMed] [Google Scholar]
  86. Molento MB, Fortes FS, Pondelek DAS, Borges FA, Chagas ACS, Torres-Acosta JF, Geldhof P. 2011. Challenges of nematode control in ruminants: focus on Latin America. Veterinary Parasitology, 180, 126–132. [CrossRef] [PubMed] [Google Scholar]
  87. Moraes FR, Thomas-Soccol V, Rossi Junior P. 2000. Susceptibilidade de ovinos das raças Suffolk e Santa Inês à infecção natural por tricostrigilídeos. Archives of Veterinary Science, 6, 63–69. [Google Scholar]
  88. Moreno CR, Jacquiet P, Bouvier F, Cortet J, Blanchard-Letort A, Guégnard F, Francois D, Bourdillon Y, Grisez C, Prevot F, Averadère A, Demars J, Sarry J, Stella A, Woloszyn F, Canale-Tabet K, Cabaret J, Tosser-Klopp G, Salle G. 2014. Validation of QTL affecting resistance to nematodes in sheep identified in a back-cross design in a pure breed population. Proceedings of the 10th World Congress on Genetics Applied to Animal Production, Vancouver, Canada, August 2014, Communication 516. [Google Scholar]
  89. Morris CA, Bisset SA, Vlassoff A, Wheeler M, West CJ, Devantier BP, Mackay AD. 2010. Selecting for resilience in Romney sheep under nematode parasite challenge. New Zealand Journal of Agricultural Research, 53, 245–261. [CrossRef] [Google Scholar]
  90. Morris CA, Vlassoff A, Bisset SA, Baker RL, Watson TG, West CJ, Wheeler M. 2000. Continued selection of Romney sheep for resistance or susceptibility to nematode infection: estimates of direct and correlated responses. Animal Science, 70(1), 17–27. [Google Scholar]
  91. Nieto LM, Martins EN, Macedo FAF. 2003. Utilização de um modelo de limiar na estimação da herdabilidade de resistência dos ovinos aos endoparasitos. Acta Scientiarum, 25(1), 151–155. [Google Scholar]
  92. Nunes RL, Dos Santos LL, Bastianetto E, De Oliveira DAA, Brasil BSAF. 2013. Frequency of benzimidazole resistance in Haemonchus contortus populations isolated from buffalo, goat and sheep herds. Revista Brasileira de Parasitologia Veterinária, 22, 548–553. [CrossRef] [Google Scholar]
  93. Oltenacu PA, Broom DM. 2010. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Animal Welfare, 19(S), 39–49. [Google Scholar]
  94. Paterson S, Wilson K, Pemberton JM. 1998. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proceedings of the National Academy of Science of the United States of America, 98, 3714–3719. [CrossRef] [Google Scholar]
  95. Patterson KA, McEwan JC, Dodds KG. 2001. Fine mapping a locus affecting host resistance to internal parasites in sheep, in Association for Advancement in Animal Breeding and Genetics Proceedings, Vol. 13. Queenstown, New Zealand. p. 91–94. [Google Scholar]
  96. Perry BD, McDermott JJ, Randolph TF, Sones KR, Thornton PK. 2002. Investing in animal health research to alleviate poverty. Nairobi International Livestock Research Institute: Nairobi. [Google Scholar]
  97. Petroli CD, Paiva SR, Paim TP, McManus CM. 2014. Association of microsatellite markers with production traits in Santa Inês and crossbred sheep. Archives of Veterinary Science, 19, 7–16. [Google Scholar]
  98. Prichard R. 2001. Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends in Parasitology, 17, 445–453. [CrossRef] [PubMed] [Google Scholar]
  99. Quinnell RJ. 2003. Genetics of susceptibility to human helminth infection. International Journal for Parasitology, 33, 1219–1231. [CrossRef] [PubMed] [Google Scholar]
  100. Raberg L, Graham AL, Read AF. 2009. Decomposing health: tolerance and resistance to parasites in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 37–49. [CrossRef] [Google Scholar]
  101. Rauw WM, Kanis E, Noordhuizen-Stassen EN, Grommers FJ. 1998. Undesirable side effects of selection for high production efficiency in farm animals: a review. Livestock Production Science, 56, 15–33. [CrossRef] [Google Scholar]
  102. Riggio V, Pong-Wong R, Sallé G, Usai MG, Casu S, Moreno CR, Matika O, Bishop SC. 2014. A joint analysis to identify loci underlying variation in nematode resistance in three European sheep populations. Journal of Animal Breeding and Genetics, 8. Ahead of print (http://onlinelibrary.wiley.com/doi/10.1111/jbg.12071/full). [Google Scholar]
  103. Riley DG, Van Wyk JA. 2011. The effects of penalization of FAMACHA scores of lambs treated for internal parasites on the estimation of genetic parameters and prediction of breeding values. Small Ruminant Research, 99, 122–129. [CrossRef] [Google Scholar]
  104. Roberts JA, Estuningsih E, Widjayanti S, Wiedosari E, Partoutomo S, Spithill TW. 1997. Resistance of Indonesian thin tail sheep against Fasciola gigantica and F. hepatica. Veterinary Parasitology, 68(1–2), 69–78. [CrossRef] [PubMed] [Google Scholar]
  105. Rocha RA, Amarante AFT, Bricarello PA. 2004. Comparison of the susceptibility of Santa Inês and Ile de France ewes to nematode parasitism around parturition and during lactation. Small Ruminant Research, 55(1), 65–75. [CrossRef] [Google Scholar]
  106. Safari E, Fogarty NM, Gilmour AR. 2005. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livestock Production Science, 92(3), 271–289. [CrossRef] [Google Scholar]
  107. Sallé G, Jacquiet P, Gruner L, Cortet J, Sauvé C, Prévot F, Grisez C, Bergeaud JP, Schibler L, Tircazes A, François D, Pery C, Bouvier F, Thouly JC, Brunel JC, Legarra A, Elsen JM, Bouix J, Rupp R, Moreno CR. 2012. A genome scan for QTL affecting resistance to Haemonchus contortus in sheep. Journal of Animal Science, 45, 4690–4705. [CrossRef] [Google Scholar]
  108. Santucci F, Ibrahim KM, Hewit GM. 2007. Selection on MHC-linked microsatellite loci in sheep populations. Heredity, 99, 340–348. [CrossRef] [PubMed] [Google Scholar]
  109. Sayers G, Sweeney T. 2005. Gastrointestinal nematode infection in sheep – a review of the alternatives to antihelmintics in parasite control. Animal Health Research Reviews, 6(2), 159–171. [CrossRef] [Google Scholar]
  110. Scholtz MM, Maiwashe A, Neser FWC, Theunissen A, Olivier WJ, Mokolobate MC, Hendriks J. 2013. Livestock breeding for sustainability to mitigate global warmimg, with the emphasis on developing countries. South African Journal of Animal Science, 43(3), 269–281. [CrossRef] [Google Scholar]
  111. Schwaiger FW, Gostomski D, Stear MJ. 1995. An ovine major histocompatibilty complex DRB1 allele is associated with low faecal egg counts following natural, predominantly Ostertagia circumcincta infection. International Journal of Parasitology, 25, 815–822. [CrossRef] [PubMed] [Google Scholar]
  112. Shaw RJ, McNeill MM, Gatehouse TK, Douch PG. 1997. Quantification of total sheep IgE concentration using anti-ovine IgE monoclonal antibodies in an enzyme immunoassay. Veterinary Immunology and Immunopathology, 57(3–4), 253–265. [CrossRef] [PubMed] [Google Scholar]
  113. Shaw RJ, Morris CA, Wheeler M. 2013. Genetic and phenotypic relationships between carbohydrate larval antigen (CarLA) IgA, parasite resistance and productivity in serial samples taken from lambs after weaning. International Journal for Parasitology, 43(8), 661–667. [CrossRef] [PubMed] [Google Scholar]
  114. Silvestre A, Sauve C, Cortet J, Cabaret J. 2009. Contrasting genetic structures of two parasitic nematodes, determined on the basis of neutral microsatellite markers and selected anthelmintic resistance markers. Molecular Ecology, 18, 5086–5100. [CrossRef] [PubMed] [Google Scholar]
  115. Skuce P, Stenhouse L, Jackson F, Hypša V, Gilleard J. 2010. Benzimidazole resistance allele haplotype diversity in United Kingdom isolates of Teladorsagia circumcincta supports a hypothesis of multiple origins of resistance by recurrent mutation. International Journal for Parasitology, 40, 1247–1255. [CrossRef] [PubMed] [Google Scholar]
  116. Snowder G. 2006. Genetic selection for disease resistance: challenges and opportunities. Beef Improvement Federation Conference Proceedings, 38, 52–60. [Google Scholar]
  117. Springbett AJ, MacKenzie K, Woolliams JA, Bishop SC. 2003. The contribution of genetic diversity to the spread of infectious diseases in livestock populations. Genetics, 165(3), 1465–1474. [PubMed] [Google Scholar]
  118. Stear MJ, Innocent GT, Buitkamp J. 2005. The evolution and maintenance of polymorphism in the major histocompatibility complex. Veterinary Immunology and Immunopathology, 108(1–2), 53–57. [CrossRef] [PubMed] [Google Scholar]
  119. Stear MJ, Murray M. 1994. Genetic resistance to parasitic disease: particularly of resistance in ruminants to gastrointestinal nematodes. Veterinary Parasitology, 54, 161–176. [CrossRef] [PubMed] [Google Scholar]
  120. Strain SAJ, Bishop SC, Henderson NG, Kerr A, Mickellar QA, Mitchell S, Stear MJ. 2002. The genetic control of IgA activity against Teladorsagia circumcincta and its association with parasite resistance in naturally infected sheep. Parasitology, 124(5), 545–552. [PubMed] [Google Scholar]
  121. Sutherland I, Scott I. 2010. Gastrointestinal nematodes of sheep and cattle. Wiley-Blackweell: Ames, Iowa, USA. ISBN 978-4051-8582-0. [Google Scholar]
  122. Tabor HK, Risch NJ, Myers RM. 2002. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Reviews Genetics, 3, 391–397. [CrossRef] [PubMed] [Google Scholar]
  123. Thorisson GA, Smith AV, Krishnan L, Stein LD. 2005. The international HapMap project web site. Genome Research, 15, 1592–1593. [CrossRef] [PubMed] [Google Scholar]
  124. Van Raden PM, Van Tassell CP, Wiggans GR, Sonstegaard TS, Schnabel RD, Taylor JF, Schenkel F. 2009. Invited review: reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 92, 16–24. [CrossRef] [PubMed] [Google Scholar]
  125. Van Wyk JA, Bath GF. 2002. The FAMACHA© system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Veterinary Research, 33, 509–529. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  126. Vanimisetti HB, Greiner SP, Zajac AM, Notter DR. 2004. Performance of hair sheep composite breeds: resistance of lambs to Haemonchus contortus. Journal of Animal Science, 82, 595–604. [PubMed] [Google Scholar]
  127. Vieira LS, Cavalcante ACR, Ximenes LJF. 1997. Epidemiologia e controle das principais parasitoses de caprinos nas regiões semi-áridas do Nordeste. Embrapa Caprinos, Circular Técnica, Embrapa Caprinos: Sobral, CE. 49p. [Google Scholar]
  128. Visscher PM, McEvoy B, Yang J. 2010. From Galton to GWAS: quantitative genetics of human height. Genetics Research, 92(5–6), 371–379. [CrossRef] [PubMed] [Google Scholar]
  129. Wakelin D. 1996. Immunity to parasites: how parasitic infections are controlled. Press Syndicate of the University of Cambridge: New York, USA. ISBN 0521562457. [Google Scholar]
  130. Woolaston RR, Windon RG. 2001. Selection of sheep for response to Trichostrongylus colubriformis larvae: genetic parameters. Animal Science, 73(1), 41–48. [Google Scholar]
  131. Woolaston RR. 1992. Selection of Merino sheep for increased and decreased resistance to Haemonchus contortus: peri-parturient effects on faecal egg counts. International Journal for Parasitology, 22(7), 947–953. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.