Open Access
Review
Issue
Parasite
Volume 21, 2014
Article Number 54
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2014054
Published online 28 October 2014
  1. Afzan MY, Suresh K. 2012. Pseudocyst forms of Trichomonas vaginalis from cervical neoplasia. Parasitology Research, 111(1), 371–381. [CrossRef] [PubMed] [Google Scholar]
  2. Al-Mohammed HI, Hussein EM. 2006. Comparison between secretory leukocytic protease inhibitor and reactive nitrogen intermediates levels in cervicovaginal secretions from symptomatic and asymptomatic trichomoniasis Egyptians patients. Journal of the Egyptian Society of Parasitology, 36(3), 763–777. [PubMed] [Google Scholar]
  3. Alderete JF, Benchimol M, Lehker MW, Crouch ML. 2002. The complex fibronectin-Trichomonas vaginalis interactions and Trichomonosis. Parasitology International, 51(3), 285–292. [CrossRef] [PubMed] [Google Scholar]
  4. Alderete JF, Newton E, Dennis C, Neale KA. 1991. Antibody in sera of patients infected with Trichomonas vaginalis is to trichomonad proteinases. Genitourinary Medicine, 67(4), 331–334. [PubMed] [Google Scholar]
  5. Alderete JF, Newton E, Dennis C, Neale KA. 1991. The vagina of women infected with Trichomonas vaginalis has numerous proteinases and antibody to trichomonad proteinases. Genitourinary Medicine, 67(6), 469–474. [PubMed] [Google Scholar]
  6. Alderete JF, O’Brien JL, Arroyo R, Engbring JA, Musatovova O, López O, Lauriano C, Nguyen J. 1995. Cloning and molecular characterization of two genes encoding adhesion proteins involved in Trichomonas vaginalis cytoadherence. Molecular Microbiology, 17(1), 69–83. [CrossRef] [PubMed] [Google Scholar]
  7. Alderete JF, Provenzano D. 1997. The vagina has reducing environment sufficient for activation of Trichomonas vaginalis cysteine proteinases. Genitourinary Medicine, 73(4), 291–296. [PubMed] [Google Scholar]
  8. Alvarez-Sánchez ME, Ávila-González L, Becerril-García C, Fattel-Facenda LV, Ortega-López J, Arroyo R. 2000. A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microbial Pathogenesis, 28(4), 193–202. [CrossRef] [PubMed] [Google Scholar]
  9. Alvarez-Sánchez ME, Carvajal-Gámez BI, Solano-González E, Martínez-Benitez M, García AF, Alderete JF, Arroyo R. 2008. Polyamine depletion down-regulates expression of the Trichomonas vaginalis cytotoxic CP65, a 65-kDa cysteine proteinase involved in cellular damage. International Journal of Biochemistry & Cell Biology, 40(11), 2442–2451. [CrossRef] [Google Scholar]
  10. Alvarez-Sánchez ME, Solano-González E, Yañez-Gómez C, Arroyo R. 2007. Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis. Microbes and Infection, 9(14–15), 1597–1605. [CrossRef] [Google Scholar]
  11. Ardalan S, Lee BC, Garber GE. 2009. Trichomonas vaginalis: the adhesins AP51 and AP65 bind heme and hemoglobin. Experimental Parasitology, 121(4), 300–306. [CrossRef] [PubMed] [Google Scholar]
  12. Arroyo R, Alderete JF. 1989. Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infection and Immunity, 57(10), 2991–2997. [PubMed] [Google Scholar]
  13. Arroyo R, Alderete JF. 1995. Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity. Archives of Medical Research, 26(3), 279–285. [PubMed] [Google Scholar]
  14. Arroyo R, Engbring J, Alderete JF. 1992. Molecular basis of host epithelial cell recognition by Trichomonas vaginalis. Molecular Microbiology, 6(7), 853–862. [CrossRef] [PubMed] [Google Scholar]
  15. Arroyo R, González-Robles A, Martínez-Palomo A, Alderete JF. 1993. Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Molecular Microbiology, 7(2), 299–309. [CrossRef] [PubMed] [Google Scholar]
  16. Bastida-Corcuera FD, Okumura C, Colocoussi A, Johnson PJ. 2005. Trichomonas vaginalis lipophosphoglycan mutants have reduced adherence and cytotoxicity to human ectocervical cells. Eukaryotic Cell, 4(11), 1951–1958. [CrossRef] [PubMed] [Google Scholar]
  17. Benchimol M, de Andrade Rosa I, da Silva Fontes R, Burla Dias AJ. 2008. Trichomonas adhere and phagocytose sperm cells: adhesion seems to be a prominent stage during interaction. Parasitology Research, 102(4), 597–604. [CrossRef] [PubMed] [Google Scholar]
  18. Brotz-Oesterhelt H, Sass P. 2010. Postgenomic strategies in antibacterial drug discovery. Future Microbiology, 5(10), 1553–1579. [CrossRef] [PubMed] [Google Scholar]
  19. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ. 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 315(5809), 207–212. [CrossRef] [PubMed] [Google Scholar]
  20. Castro HC, Abreu PA, Geraldo RB, Martins RC, dos Santos R, Loureiro NI, Cabral LM, Rodrigues CR. 2011. Looking at the proteases from a simple perspective. Journal of Molecular Recognition, 24(2), 165–181. [CrossRef] [Google Scholar]
  21. Cudmore SL, Garber GE. 2010. Prevention or treatment: the benefits of Trichomonas vaginalis vaccine. Journal of Infection and Public Health, 3(2), 47–53. [CrossRef] [PubMed] [Google Scholar]
  22. Cuervo P, Cupolillo E, Britto C, González LJ, E Silva-Filho FC, Lopes LC, Domont GB, De Jesu JB. 2008. Differential soluble protein expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes. Journal of Proteomics, 71(1), 109–122. [CrossRef] [PubMed] [Google Scholar]
  23. Chang JH, Kim SK, Choi IH, Lee SK, Morio T, Chang EJ. 2006. Apoptosis of macrophages induced by Trichomonas vaginalis through the phosphorylation of p38 mitogen-activated protein kinase that locates at downstream of mitochondria-dependent caspase activation. International Journal of Biochemistry & Cell Biology, 38(4), 638–647. [CrossRef] [Google Scholar]
  24. Chang JH, Park JY, Kim SK. 2006. Dependence on p38 MAPK signalling in the up-regulation of TLR2, TLR4 and TLR9 gene expression in Trichomonas vaginalis-treated HeLa cells. Immunology, 118(2), 164–170. [CrossRef] [PubMed] [Google Scholar]
  25. Chang JH, Ryang YS, Morio T, Lee SK, Chang EJ. 2004. Trichomonas vaginalis inhibits proinflammatory cytokine production in macrophages by suppressing NF-kappaB activation. Molecular Cell, 18(2), 177–185. [Google Scholar]
  26. da Costa RF, de Souza W, Benchimol M, Alderete JF, Morgado-Diaz JA. 2005. Trichomonas vaginalis perturbs the junctional complex in epithelial cells. Cell Research, 15(9), 704–716. [CrossRef] [PubMed] [Google Scholar]
  27. Dailey DC, Chang TH, Alderete JF. 1990. Characterization of Trichomonas vaginalis haemolysis. Parasitology, 101(Pt 2), 171–175. [CrossRef] [PubMed] [Google Scholar]
  28. de Jesus JB, Cuervo P, Britto C, Saboia-Vahia L, Costa E, Silva-Filho F, Borges-Veloso A, Barreiros Petrópolis D, Cupolillo E, Barbosa Domont G. 2009. Cysteine peptidase expression in Trichomonas vaginalis isolates displaying high- and low-virulence phenotypes. Journal of Proteome Research, 8(3), 1555–1564. [CrossRef] [PubMed] [Google Scholar]
  29. de Jesus JB, Cuervo P, Junqueira M, Britto C, Silva-Filho FC, Soares MJ, Cupolillo E, Fernandes O, Domont GB. 2007. A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis. Proteomics, 7(12), 1961–1972. [CrossRef] [PubMed] [Google Scholar]
  30. Dunne RL, Dunn LA, Upcroft P, O’Donoghue PJ, Upcroft JA. 2003. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Research, 13(4), 239–249. [CrossRef] [PubMed] [Google Scholar]
  31. Engbring JA, Alderete JF. 1998. Characterization of Trichomonas vaginalis AP33 adhesin and cell surface interactive domains. Microbiology, 144(Pt 11), 3011–3018. [CrossRef] [PubMed] [Google Scholar]
  32. Fichorova RN. 2009. Impact of T. vaginalis infection on innate immune responses and reproductive outcome. Journal of Reproductive Immunology, 83(1–2), 185–189. [CrossRef] [PubMed] [Google Scholar]
  33. Fichorova RN, Buck OR, Yamamoto HS, Fashemi T, Dawood HY, Fashemi B, Hayes GR, Beach DH, Takagi Y, Delaney ML, Nibert ML, Singh BN, Onderdonk AB. 2013. The villain team-up or how Trichomonas vaginalis and bacterial vaginosis alter innate immunity in concert. Sexually Transmitted Infections, 89(6), 460–466. [CrossRef] [PubMed] [Google Scholar]
  34. Fichorova RN, Lee Y, Yamamoto HS, Takagi Y, Hayes GR, Goodman RP, Chepa-Lotrea X, Buck OR, Murray R, Kula T, Beach DH, Singh BN, Nibert ML. 2012. Endobiont viruses sensed by the human host – beyond conventional antiparasitic therapy. PLoS One, 7(11), e48418. [CrossRef] [PubMed] [Google Scholar]
  35. Fichorova RN, Trifonova RT, Gilbert RO, Costello CE, Hayes GR, Lucas JJ, Singh BN. 2006. Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infection and Immunity, 74(10), 5773–5779. [CrossRef] [PubMed] [Google Scholar]
  36. Fiori PL, Rappelli P, Addis MF, Mannu F, Cappuccinelli P. 1997. Contact-dependent disruption of the host cell membrane skeleton induced by Trichomonas vaginalis. Infection and Immunity, 65(12), 5142–5148. [PubMed] [Google Scholar]
  37. Fiori PL, Rappelli P, Rocchigiani AM, Cappuccinellim P. 1993. Trichomonas vaginalis haemolysis: evidence of functional pores formation on red cell membranes. FEMS Microbiology Letters, 109(1), 13–18. [CrossRef] [PubMed] [Google Scholar]
  38. Galetović A, Souza RT, Santos MR, Cordero EM, Bastos IM, Santana JM, Ruiz JC, Lima FM, Marini MM, Mortara RA, da Silveira JF. 2011. The repetitive cytoskeletal protein H49 of Trypanosoma cruzi is a calpain-like protein located at the flagellum attachment zone. PLoS One, 6(11), e27634. [CrossRef] [PubMed] [Google Scholar]
  39. Garber GE, Lemchuk-Favel LT. 1994. Analysis of the extracellular proteases of Trichomonas vaginalis. Parasitology Research, 80(5), 361–365. [CrossRef] [PubMed] [Google Scholar]
  40. García AF, Benchimol M, Alderete JF. 2005. Trichomonas vaginalis polyamine metabolism is linked to host cell adherence and cytotoxicity. Infection and Immunity, 73(5), 2602–2610. [CrossRef] [PubMed] [Google Scholar]
  41. García AF, Chang TH, Benchimol M, Klumpp DJ, Lehker MW, Alderete JF. 2003. Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Molecular Microbiology, 47(5), 1207–1224. [CrossRef] [PubMed] [Google Scholar]
  42. Hansen G, Schwarzloh B, Rennenberg A, Heussler VT, Hilgenfeld R. 2011. The macromolecular complex of ICP and falcipain-2 from Plasmodium: preparation, crystallization and preliminary X-ray diffraction analysis. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 67(Pt 11), 1406–1410. [CrossRef] [Google Scholar]
  43. Harp DF, Chowdhury I. 2011. Trichomoniasis: evaluation to execution. European Journal of Obstetrics & Gynecology and Reproductive Biology, 157(1), 3–9. [CrossRef] [Google Scholar]
  44. Hecht O, Van Nuland NA, Schleinkofer K, Dingley AJ, Bruhn H, Leippe M, Grötzinger J. 2004. Solution structure of the pore-forming protein of Entamoeba histolytica. Journal of Biological Chemistry, 279(17), 17834–17841. [CrossRef] [Google Scholar]
  45. Hernández-Gutíerrez R, Ávila-González L, Ortega-López J, Cruz-Talonia F, Gómez-Gutíerrez G, Arroyo R. 2004. Trichomonas vaginalis: characterization of a 39-kDa cysteine proteinase found in patient vaginal secretions. Experimental Parasitology, 107(3–4), 125–135. [CrossRef] [PubMed] [Google Scholar]
  46. Hernández-Gutiérrez R, Ortega-López J, Arroyo R. 2003. A 39-kDa cysteine proteinase CP39 from Trichomonas vaginalis, which is negatively affected by iron may be involved in trichomonal cytotoxicity. Journal of Eukaryotic Microbiology, 50(Suppl), 696–698. [CrossRef] [Google Scholar]
  47. Hernández HM, Figueredo M, Garrido N, Sánchez L, Sarracent J. 2005. Intranasal immunisation with a 62 kDa proteinase combined with cholera toxin or CpG adjuvant protects against Trichomonas vaginalis genital tract infections in mice. International Journal for Parasitology, 35(13), 1333–1337. [CrossRef] [PubMed] [Google Scholar]
  48. Hernández H, Marcet R, Figueredo M, Garrido N, Sarracent J. 2008. Comparative study of epitopes recognized by two monoclonal antibodies that protects mice against Trichomonas vaginalis challenge. Experimental Parasitology, 118(4), 583–586. [CrossRef] [PubMed] [Google Scholar]
  49. Hernández H, Sariego I, Garber G, Delgado R, López O, Sarracent J. 2004. Monoclonal antibodies against a 62 kDa proteinase of Trichomonas vaginalis decrease parasite cytoadherence to epithelial cells and confer protection in mice. Parasite Immunology, 26(3), 119–125. [CrossRef] [PubMed] [Google Scholar]
  50. Hernández HM, Sariego I, Alvarez AB, Marcet R, Vancol E, Alvarez A, Figueredo M, Sarracent J. 2011. Trichomonas vaginalis 62 kDa proteinase as a possible virulence factor. Parasitology Research, 108(1), 241–245. [CrossRef] [PubMed] [Google Scholar]
  51. Hirt RP, de Miguel N, Nakjang S, Dessi D, Liu YC, Diaz N, Rappelli P, Acosta-Serrano A, Fiori PL, Mottram JC. 2011. Trichomonas vaginalis pathobiology new insights from the genome sequence. Advances in Parasitology, 77, 87–140. [CrossRef] [PubMed] [Google Scholar]
  52. Honigberg BM. 1987. Immunology of trichomonads, with emphasis on Trichomonas vaginalis. Acta Universitatis Carolinae – Biologica, 10, 321–336. [Google Scholar]
  53. Huppert JS. 2009. Trichomoniasis in teens: an update. Current Opinion in Obstetrics & Gynecology, 21(5), 371–378. [CrossRef] [PubMed] [Google Scholar]
  54. Huppert JS, Huang B, Chenm C, Dawood HY, Fichorova RN. 2013. Clinical evidence for the role of Trichomonas vaginalis in regulation of secretory leukocyte protease inhibitor in the female genital tract. Journal of Infectious Disease, 207(9), 1462–1470. [CrossRef] [Google Scholar]
  55. Kang JH, Song HO, Ryu JS, Shin MH, Kim JM, Cho YS, Alderete JF, Ahn MH, Min DY. 2006. Trichomonas vaginalis promotes apoptosis of human neutrophils by activating caspase-3 and reducing Mcl-1 expression. Parasite Immunology, 28(9), 439–446. [CrossRef] [PubMed] [Google Scholar]
  56. Klemba M, Goldberg DE. 2002. Biological roles of proteases in parasitic protozoa. Annual Review of Biochemistry, 71, 275–305. [CrossRef] [PubMed] [Google Scholar]
  57. Kucknoor A, Mundodi V, Alderete JF. 2005. Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells. Cellular Microbiology, 7(6), 887–897. [CrossRef] [PubMed] [Google Scholar]
  58. Kucknoor AS, Mundodi V, Alderete JF. 2005. Adherence to human vaginal epithelial cells signals for increased expression of Trichomonas vaginalis genes. Infection and Immunity, 73(10), 6472–6478. [CrossRef] [PubMed] [Google Scholar]
  59. Kucknoor AS, Mundodi V, Alderete JF. 2007. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cellular Microbiology, 9(11), 2586–2597. [CrossRef] [PubMed] [Google Scholar]
  60. Kummer S, Hayes GR, Gilbert RO, Beach DH, Lucas JJ, Singh BN. 2008. Induction of human host cell apoptosis by Trichomonas vaginalis cysteine proteases is modulated by parasite exposure to iron. Microbial Pathogenesis, 44(3), 197–203. [CrossRef] [PubMed] [Google Scholar]
  61. Lehker MW, Alderete JF. 1992. Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Molecular Microbiology, 6(1), 123–132. [CrossRef] [PubMed] [Google Scholar]
  62. Lehker MW, Alderete JF. 2000. Biology of trichomonosis. Current Opinion of Infectious Diseases, 13(1), 37–45. [CrossRef] [Google Scholar]
  63. Lehker MW, Arroyo R, Alderete JF. 1991. The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. Journal of Experimental. Medicine, 174(2), 311–318. [CrossRef] [Google Scholar]
  64. Lehker MW, Chang TH, Dailey DC, Alderete JF. 1990. Specific erythrocyte binding is an additional nutrient acquisition system for Trichomonas vaginalis. Journal of Experimental Medicine, 171(6), 2165–2170. [CrossRef] [Google Scholar]
  65. Lehker MW, Sweeney D. 1999. Trichomonad invasion of the mucous layer requires adhesins, mucinases, and motility. Sexually Transmitted Infections, 75(4), 231–238. [CrossRef] [PubMed] [Google Scholar]
  66. Leippe M, Bruhn H, Hecht O, Grötzinger J. 2005. Ancient weapons: the three-dimensional structure of amoebapore A. Trends Parasitology, 21(1), 5–7. [CrossRef] [PubMed] [Google Scholar]
  67. León-Sicairos CR, León-Felix J, Arroyo R. 2004. Tvcp12: a novel Trichomonas vaginalis cathepsin L-like cysteine proteinase-encoding gene. Microbiology, 150(Pt 5), 1131–1138. [CrossRef] [PubMed] [Google Scholar]
  68. Liu YH, Han YP, Li ZY, Wei J, He HJ, Xu CZ, Zheng HQ, Zhan XM, Wu ZD, Lv ZY. 2010. Molecular cloning and characterization of cystatin, a cysteine protease inhibitor, from Angiostrongylus cantonensis. Parasitology Research, 107(4), 915–922. [CrossRef] [PubMed] [Google Scholar]
  69. McClelland RS. 2008. Trichomonas vaginalis infection: Can we afford to do nothing? Journal of Infectious Disease, 197(4), 487–489. [CrossRef] [Google Scholar]
  70. Mendoza-López MR, Becerril-García C, Fattel-Facenda LV, Ávila-González L, Ruiz-Tachiquin ME, Ortega-López J, Arroyo R. 2000. CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence. Infection and Immunity, 68(9), 4907–4912. [CrossRef] [PubMed] [Google Scholar]
  71. Min DY, Hyun KH, Ryu JS, Ahn MH, Cho MH. 1998. Degradations of human immunoglobulins and hemoglobin by a 60 kDa cysteine proteinase of Trichomonas vaginalis. Korean Journal of Parasitology, 36(4), 261–268. [CrossRef] [Google Scholar]
  72. Moreno-Brito V, Yáñez-Gómez C, Meza-Cervantez P, Ávila-González L, Rodríguez MA, Ortega-López J, González-Robles A, Arroyo RA. 2005. A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron. Cellular Microbiology, 7(2), 245–258. [CrossRef] [PubMed] [Google Scholar]
  73. Muñoz C, Pérez M, Orrego PR, Osorio L, Gutíerrez B, Sagua H, Castillo JL, Martínez-Oyanedel J, Arroyo R, Meza-Cervantez P, da Silveira JF, Midlej V, Benchimol M, Cordero E, Morales P, Araya JE, González J. 2012. A protein phosphatase 1 gamma (PP1gamma) of the human protozoan parasite Trichomonas vaginalis is involved in proliferation and cell attachment to the host cell. International Journal for Parasitology, 42(8), 715–727. [CrossRef] [PubMed] [Google Scholar]
  74. Neale KA, Alderete JF. 1990. Analysis of the proteinases of representative Trichomonas vaginalis isolates. Infection and Immunity, 58(1), 157–162. [PubMed] [Google Scholar]
  75. Norbury LJ, Beckham S, Pike RN, Grams R, Spithill TW, Fecondo JV, Smooker PM. 2011. Adult and juvenile Fasciola cathepsin L proteases: different enzymes for different roles. Biochimie, 93(3), 604–611. [CrossRef] [PubMed] [Google Scholar]
  76. Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH. 2007. Activation of multifarious transcription of an adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite Trichomonas vaginalis. Journal of Biological Chemistry, 282(9), 6716–6725. [CrossRef] [Google Scholar]
  77. Peng J, Yang Y, Feng X, Cheng G, Lin J. 2010. Molecular characterizations of an inhibitor of apoptosis from Schistosoma japonicum. Parasitology Research, 106(4), 967–976. [CrossRef] [PubMed] [Google Scholar]
  78. Provenzano D, Alderete JF. 1995. Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis. Infection and Immunity, 63(9), 3388–3395. [PubMed] [Google Scholar]
  79. Quintas-Granados LI, Orozco E, Brieba LG, Arroyo R, Ortega-López J. 2009. Purification, refolding and autoactivation of the recombinant cysteine proteinase EhCP112 from Entamoeba histolytica. Protein Expression Purification, 63(1), 26–32. [CrossRef] [Google Scholar]
  80. Ramón-Luing LA, Rendón-Gandarilla FJ, Cárdenas-Guerra RE, Rodríguez-Cabrera NA, Ortega-López J, Ávila-González L, Angel-Ortiz C, Herrera-Sánchez CN, Mendoza-García M, Arroyo R. 2010. Immunoproteomics of the active degradome to identify biomarkers for Trichomonas vaginalis. Proteomics, 10(3), 435–444. [CrossRef] [PubMed] [Google Scholar]
  81. Ramón-Luing LA, Rendón-Gandarilla FJ, Puente-Rivera J, Ávila-González L, Arroyo R. 2011. Identification and characterization of the immunogenic cytotoxic TvCP39 proteinase gene of Trichomonas vaginalis. International Journal of Biochemistry & Cell Biology, 43(10), 1500–1511. [CrossRef] [Google Scholar]
  82. Rebello KM, Côrtes LM, Pereira BA, Pascarelli BM, Côrte-Real S, Finkelstein LC, Pinho RT, d’Avila-Levy CM, Alves CR. 2009. Cysteine proteinases from promastigotes of Leishmania (Viannia) braziliensis. Parasitology Research, 106(1), 95–104. [CrossRef] [PubMed] [Google Scholar]
  83. Rendon-Gandarilla FJ, Ramón-Luing LD, Ortega-López J, Rosa de Andrade I, Benchimol M, Arroyo R. 2013. The TvLEGU-1, a legumain-like cysteine proteinase, plays a key role in Trichomonas vaginalis cytoadherence. BioMed Research International, 2013, 561979. [CrossRef] [PubMed] [Google Scholar]
  84. Rendon-Maldonado JG, Espinosa-Cantellano M, Gónzalez-Robles A, Martínez-Palomo A. 1998. Trichomonas vaginalis: in vitro phagocytosis of lactobacilli, vaginal epithelial cells, leukocytes, and erythrocytes. Experimental Parasitology, 89(2), 241–250. [CrossRef] [PubMed] [Google Scholar]
  85. Rosenthal PJ. 2011. Falcipains and other cysteine proteases of malaria parasites. Advances in Experimental Medicine and Biology, 712, 30–48. [CrossRef] [PubMed] [Google Scholar]
  86. Ryu JS, Choi HK, Min DY, Ha SE, Ahn MH. 2001. Effect of iron on the virulence of Trichomonas vaginalis. Journal of Parasitology, 87(2), 457–460. [CrossRef] [Google Scholar]
  87. Scott DA, North MJ, Coombs GH. 1995. Trichomonas vaginalis: amoeboid and flagellated forms synthesize similar proteinases. Experimental Parasitology, 80(2), 345–348. [CrossRef] [PubMed] [Google Scholar]
  88. Schwebke JR, Burgess D. 2004. Trichomoniasis. Clinical Microbiology Reviews, 17(4), 794–803. [CrossRef] [PubMed] [Google Scholar]
  89. Smooker PM, Jayaraj R, Pike RN, Spithill TW. 2010. Cathepsin B proteases of flukes: the key to facilitating parasite control? Trends in Parasitology, 26(10), 506–514. [CrossRef] [PubMed] [Google Scholar]
  90. Solano-González E, Burrola-Barraza E, León-Sicairos C, Ávila-González L, Gutiérrez-Escolano L, Ortega-López J, Arroyo R. 2007. The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element. FEBS Letters, 581(16), 2919–2928. [CrossRef] [PubMed] [Google Scholar]
  91. Sommer U, Costello CE, Hayes GR, Beach DH, Gilbert RO, Lucas JJ, Singh BN. 2005. Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. Journal of Biological Chemistry, 280(25), 23853–23860. [CrossRef] [Google Scholar]
  92. Sood S, Kapil A. 2008. An update on Trichomonas vaginalis. Indian Journal of Sexually Transmitted Diseases, 29(1), 7–14. [CrossRef] [Google Scholar]
  93. Sorvillo F, Kerndt P. 1998. Trichomonas vaginalis and amplification of HIV-1 transmission. Lancet, 351(9097), 213–214. [CrossRef] [Google Scholar]
  94. Torres-Romero JC, Arroyo R. 2009. Responsiveness of Trichomonas vaginalis to iron concentrations: evidence for a post-transcriptional iron regulation by an IRE/IRP-like system. Infection Genetics and Evolution, 9(6), 1065–1074. [CrossRef] [Google Scholar]
  95. Upcroft JA, Dunn LA, Wal T, Tabrizi S, Delgadillo-Correa MG, Johnson PJ, Garland S, Siba P, Upcroft P. 2009. Metronidazole resistance in Trichomonas vaginalis from highland women in Papua New Guinea. Sexual Health, 6(4), 334–338. [CrossRef] [PubMed] [Google Scholar]
  96. Vazquez-Carrillo LI, Quintas-Granados LI, Arroyo R, Mendoza-Hernández G, González-Robles A, Carvajal-Gámez BI, Álvarez-Sánchez ME. 2011. The effect of Zn2+ on prostatic cell cytotoxicity caused by Trichomonas vaginalis. Journal of Integrated Omics, 1(2), 198–210. [Google Scholar]
  97. Wendel KA. 2003. Trichomoniasis: What’s new? Current Infectious Disease Reports, 5(2), 129–134. [CrossRef] [PubMed] [Google Scholar]
  98. Yadav M, Dubey ML, Gupta I, Malla N. 2007. Cysteine proteinase 30 (CP30) and antibody response to CP30 in serum and vaginal washes of symptomatic and asymptomatic Trichomonas vaginalis-infected women. Parasite Immunology, 29(7), 359–365. [CrossRef] [PubMed] [Google Scholar]
  99. Yadav M, Dubey ML, Gupta I, Bhatti G, Malla N. 2007. Cysteine proteinase 30 in clinical isolates of T. vaginalis from symptomatic and asymptomatic infected women. Experimental Parasitology, 116(4), 399–406. [CrossRef] [PubMed] [Google Scholar]
  100. Yano A, Yui K, Aosai F, Kojima S, Kawana T, Ovary Z. 1983. Immune response to Trichomonas vaginalis. IV. Immunochemical and immunobiological analyses of T. vaginalis antigen. International Archives of Allergy and Applied Immunology, 72(2), 150–157. [CrossRef] [PubMed] [Google Scholar]
  101. Zariffard MR, Harwani S, Novak RM, Graham PJ, Ji X, Spear GT. 2004. Trichomonas vaginalis infection activates cells through toll-like receptor. Clinical Immunology, 111(1), 103–107. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.