Open Access
Issue |
Parasite
Volume 19, Number 3, August 2012
|
|
---|---|---|
Page(s) | 227 - 238 | |
DOI | https://doi.org/10.1051/parasite/2012193227 | |
Published online | 15 August 2012 |
- Al-Jahdali M.O. Helminth parasites from Red Sea fishes: Neowardula brayi gen. nov., sp. nov. (Trematoda: Mesometridae Poche, 1926) and Sclerocollum saudii sp. nov. (Acanthocephala: Cavisomidae Meyer, 1932). Zootaxa, 2010, 2681, 57–65. [Google Scholar]
- Al-Jahdali M.O. Infrapopulations of Procamallanus elatensis Fusco & Overstreet, 1979 (Nematoda: Camallanidae) in the rabbitfish Siganus rivulatus (Teleostei: Siganidae) from the Saudi coast of the Red Sea. Journal of Helminthology, 2011, online 26 September 2011, 8 p., doi: 10.1017/ S0022149X11000551. [Google Scholar]
- Al-Jahdali M.O. & Hassanine R.M. El-Said. Infrapopulations of Sclerocollum saudii Al-Jahdali, 2010 (Acanthocephala: Cavisomidae) in the rabbitfish Siganus rivulatus (Teleostei: Siganidae) from the Saudi coast of the Red Sea. Journal of Helminthology, 2012a, 86, 85–94. [CrossRef] [Google Scholar]
- Al-Jahdali M.O. & Hassanine R.M. El-Said. The life cycle of Gyliauchen volubilis Nagaty, 1956 (Digenea: Gyliauchenidae) from the Red Sea. Journal of Helminthology, 2012b, 86, 165–172. [CrossRef] [PubMed] [Google Scholar]
- Angeloni L., Bradbury J.W. & Charnov E.L. Body size and sex allocation in simultaneously hermaphroditic animals. Behavioral Ecology, 2002, 13, 419–426. [CrossRef] [Google Scholar]
- Brown A.F. Evidence for density-dependent establishment and survival of Pomphorhynchus laevis (Müller, 1776) (Acanthocephala) in laboratory-infected Salmo gairdneri Richardson and its bearing on wild populations in Leuciscus cephalus (L.). Journal of Fish Biology, 1986, 28, 659–669. [CrossRef] [Google Scholar]
- Brown S.P., Renaud F., Guègan J.F. & Thomas F. Evolution of trophic transmission in parasites: the need to reach a mating place? Journal of Evolutionary Biology, 2001, 14, 815–820. [CrossRef] [Google Scholar]
- Bush A.O., Lafferty K.D., Lotz J.M. & Shostak A.W. Parasitology meets ecology on its own terms: Margolis et al., revisited. Journal of Parasitology, 1997, 83, 575–583. [CrossRef] [PubMed] [Google Scholar]
- Charlesworth D. & Charlesworth B. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics, 1987, 18, 237–268. [CrossRef] [Google Scholar]
- Charnov E.L. The theory of sex allocation. Princeton University Press, Princeton, New Jersey, 1982, 355 p. [Google Scholar]
- Charnov E.L. Sperm competition and sex allocation in simultaneous hermaphrodites. Evolutionary Ecology, 1996, 10, 457–462. [CrossRef] [Google Scholar]
- Combes C. Interactions durables: Écologie et évolution du parasitisme. Masson, Paris, France, 1995, 524 p. [Google Scholar]
- Dezfuli B.S., Volponi S., Beltrami I. & Poulin R. Intra- and interspecific density-dependent effects on growth in helminth parasites of the cormorant. Phalacrocorax carbo sinensis. Parasitology, 2002, 124, 537–544. [Google Scholar]
- Esch G.W. & Fernandez J.C. A functional biology of parasitism: ecological and evolutionary implications. Chapman & Hall, London, UK, 1993, 337 p. [Google Scholar]
- Fenton A. & Hudson P.J. Optimal infection strategies: should macroparasites hedge their bets? Oikos, 2002, 96, 92–101. [CrossRef] [Google Scholar]
- Fusco A.C. & Overstreet R.M. Two camallanid nematodes from Red Sea fishes including Procamallanus elatensis sp. nov. from siganids. Journal of Natural History, 1979, 13, 35–40. [CrossRef] [Google Scholar]
- Hamilton W.D. Extraordinary sex ratios. Science, 1967, 156, 477–488. [CrossRef] [PubMed] [Google Scholar]
- Hassanine R.M. & Al-Jahdali M.O. Intraspecific density-dependent effects on growth and fecundity of Diplosentis nudus (Harada, 1938) Pichelin et Cribb, 2001 (Acanthocephala: Cavisomidae). Acta Parasitologica, 2008, 53, 289–295. [CrossRef] [Google Scholar]
- Jarne P. & Charlesworth D. The evolution of the selfing rate in functionally hermaphrodite plants and animals. Annual Reviews in Ecology and Systematics, 1993, 24, 441–466. [CrossRef] [Google Scholar]
- Kennedy C.R. Ecology of the Acanthocephala, 1st edn. Cambridge University Press, Cambridge, 2006, 249 p. [CrossRef] [Google Scholar]
- Keymer A.E. Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology, 1982, 84, 573–587. [CrossRef] [PubMed] [Google Scholar]
- Lively C.M. Male allocation and the cost of biparental sex in a parasitic worm. Lectures on Mathematics in the Life Sciences, 1990, 22, 93–107. [Google Scholar]
- Lüscher A. & Wedekind C. Size-dependent discrimination of mating partners in the simultaneous hermaphroditic cestode Schistocephalus solidus. Behavioral Ecology, 2002, 13, 254–259. [CrossRef] [Google Scholar]
- Lythgoe K.A. The coevolution of parasites with hostacquired immunity and the evolution of sex. Evolution, 2002, 54, 1142–1156. [CrossRef] [Google Scholar]
- Nagaty H.F. Trematodes of fishes from the Red Sea. Part 7. On two gyliauchenids and three allocreadiids, including four new species. Journal of Parasitology, 1956, 42, 523–527. [CrossRef] [Google Scholar]
- Poulin R. Body size vs abundance among parasite species: positive relationship? Ecography, 1999, 22 (3), 246–250. [CrossRef] [Google Scholar]
- Poulin R. Evolutionary ecology of parasites, 2nd edn. Princeton University Press, Princeton, 2007, 332 p. [Google Scholar]
- Poulin R., Giari L., Simoni E. & Dezfuli B.S. Effects of conspecifics and heterospecifics on individual worm mass in four helminth species parasitic in fish. Parasitology Research, 2003, 90, 143–147. [PubMed] [Google Scholar]
- Raimondi P.T. & Martin J.E. Evidence that mating group size affects allocation of reproductive resources in a simultaneous hermaphrodite. American Naturalist, 1991, 138, 1206–1217. [CrossRef] [Google Scholar]
- Richards D.T. & Lewis J.W. Fecundity and egg output by Toxocara canis in the red fox. Vulpes vulpes. Journal of Helminthology, 2001, 75, 157–164. [Google Scholar]
- Rohde K. The origins of parasitism in the platyhelminthes. International Journal for Parasitology, 1994, 24, 1099–1115. [CrossRef] [PubMed] [Google Scholar]
- Rohde K. A non-competitive mechanism responsible for restricting niches. Zoologische Anzeiger, 1977, 199, 164–172. [Google Scholar]
- Sasal P., Jobet E., Faliex E. & Morand S. Sexual competition in an acanthocephalan parasite of fish. Parasitology, 2000, 120, 65–69. [CrossRef] [PubMed] [Google Scholar]
- Schärer L. Tests of sex allocation theory in simultaneously hermaphroditic animals. Evolution, 2009, 63, 1377–1405. [CrossRef] [PubMed] [Google Scholar]
- Schärer L. & Wedekind C. Social situation, sperm competition and sex allocation in a simultaneous hermaphrodite parasite, the cestode Schistocephalus solidus. Journal of Evolutionary Biology, 2001, 14, 942–953. [CrossRef] [Google Scholar]
- Schjørring S. Delayed selfing in relation to the availability of a mating partner in the cestode Schistocephalus solidus. Evolution, 2004, 58, 2591–2596. [PubMed] [Google Scholar]
- Shostak A.W. & Scott M.E. Detection of density dependent growth and fecundity of helminthes in natural infections. Parasitology, 1993, 106, 527–539. [CrossRef] [PubMed] [Google Scholar]
- Szalai A.J. & Dick T.A. Differences in numbers and inequalities in mass and fecundity during the egg producing period for Raphidascaris acus (Nematoda: Anisakidae). Parasitology, 1989, 98, 483–489. [Google Scholar]
- Thomas F. & Poulin R. Egg size variability in trematodes: test of the bet-hedging hypothesis. Journal of Parasitology, 2003, 89, 1159–1162. [CrossRef] [Google Scholar]
- Trouvé S., Jourdane J., Renaud F., Durand P. & Morand S. Adaptive sex allocation in a simultaneous hermaphrodite. Evolution, 1999, 53, 1599–1604. [CrossRef] [PubMed] [Google Scholar]
- Uznanski R.L. & Nickol B.B. Site selection, growth, and survival of Leptorhynchoides thecatus (Acanthocephala) during the prepatent period in Lepomis cyanellus. Journal of Parasitology, 1982, 68, 686–690. [CrossRef] [Google Scholar]
- Wedekind C., Strahm D. & Schärer L. Evidence for strategic egg production in a hermaphroditic cestode. Parasitology, 1998, 117, 373–382. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.