Issue |
Parasite
Volume 28, 2021
|
|
---|---|---|
Article Number | 61 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/parasite/2021055 | |
Published online | 10 August 2021 |
Research Article
Prevalence and infection risk factors of bovine Eimeria in China: a systematic review and meta-analysis
Prévalence et facteurs de risque des infections des bovins par Eimeria en Chine : revue systématique et méta-analyse
1
College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province
130118, PR China
2
College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province
130118, PR China
3
Laboratory of Production and Product Application of Sika Deer of Jilin Province, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province
130118, PR China
* Corresponding authors: lengxue_79@163.com; durui197101@sina.com
Received:
10
October
2020
Accepted:
25
June
2021
Eimeria spp. cause the disease coccidiosis, which results in chronic wasting of livestock and can lead to the death of the animal. The disease, common worldwide, has caused huge economic losses to the cattle industry in particular. This is the first systematic review and meta-analysis of the prevalence of bovine Eimeria in China. Our search of five databases including PubMed, ScienceDirect, China National Knowledge Infrastructure (CNKI), Chongqing VIP, and Wan Fang for articles published up to February 29, 2020 on the prevalence of Eimeria in cattle in mainland China yielded 46 articles, in which the prevalence of cattle ranged from 4.6% to 87.5%. The rate of bovine Eimeria infection has been decreasing year by year, from 57.9% before 2000 to 25.0% after 2015, but it is still high. We also analyzed the region, sampling years, detection methods, feeding model, seasons, and species of bovine Eimeria. We recommend that prevention strategies should focus on strengthening detection of Eimeria in calves in the intensive farming model.
Résumé
Les espèces d’Eimeria provoquent la coccidiose, une maladie qui entraîne l’émaciation chronique du bétail et peut entraîner la mort de l’animal. La maladie, répandue dans le monde entier, a causé d’énormes pertes économiques à l’industrie bovine en particulier. Ceci est la première revue systématique et méta-analyse de la prévalence des Eimeria des bovins en Chine. Notre recherche dans cinq bases de données, dont PubMed, ScienceDirect, China National Knowledge Infrastructure (CNKI), Chongqing VIP et Wan Fang, pour des articles publiés jusqu’au 29 février 2020, sur la prévalence des Eimeria chez les bovins en Chine continentale, a donné 46 articles, dans lesquels la prévalence chez les bovins variait de 4,6 % à 87,5 %. Le taux d’infection des bovins par Eimeria a diminué d’année en année, passant de 57,9 % avant 2000 à 25,0 % après 2015, mais il est toujours élevé. Nous avons également analysé la région, les années d’échantillonnage, les méthodes de détection, le modèle d’alimentation, les saisons et les espèces d’Eimeria de bovins. Nous recommandons que les stratégies de prévention se concentrent sur le renforcement de la détection des Eimeria chez les veaux dans les élevages intensifs.
Key words: Eimeria / Cattle / Mainland China / Prevalence / Meta-analysis
© D.-L. Li et al., published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.