Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

M-O-M mediated denaturation resistant P2 tetramer on the infected erythrocyte surface of malaria parasite imports serum fatty acids

Sudipta Das, Anwesa Manna, Oindrila Majumdar and Lena Dhara
iScience 27 (5) 109760 (2024)
https://doi.org/10.1016/j.isci.2024.109760

Chemopreventive and remediation effect of Adansonia digitata L . Baobab (Bombacaceae) stem bark extracts in mouse model malaria

A.O. Adeoye and C.O. Bewaji
Journal of Ethnopharmacology 210 31 (2018)
https://doi.org/10.1016/j.jep.2017.08.025

Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy?

Coralie Boulet, Christian D. Doerig and Teresa G. Carvalho
Frontiers in Cellular and Infection Microbiology 8 (2018)
https://doi.org/10.3389/fcimb.2018.00419

Antimalarial Activity of Plant Metabolites

Wen-Hui Pan, Xin-Ya Xu, Ni Shi, Siu Wai Tsang and Hong-Jie Zhang
International Journal of Molecular Sciences 19 (5) 1382 (2018)
https://doi.org/10.3390/ijms19051382

Apigenin-induced ABCC1-mediated efflux of glutathione from mature erythrocytes inhibits the proliferation of Plasmodium falciparum

Ohud Fallatah and Elias Georges
International Journal of Antimicrobial Agents 50 (5) 673 (2017)
https://doi.org/10.1016/j.ijantimicag.2017.08.014

Stage-Specific Changes on <i>Plasmodium yoelii yoelii </i>Following Treatment with <i>Hintonia latiflora</i> Stem Bark Extract and Phytochemical-Antioxidant Evaluation

Elba Carrasco-Ramírez, Perla Y. López-Camacho, Armando Zepeda-Rodríguez, et al.
Pharmacology & Pharmacy 08 (12) 381 (2017)
https://doi.org/10.4236/pp.2017.812028

Alteration of redox status by commonly used antimalarial drugs in the north-western region of Nigeria

A Muhammad, MA Ibrahim, HA Mohammed, OL Erukainure, I Malami, A Suleiman, A Mansir, A Godwin and HA Khalil
Human & Experimental Toxicology 36 (2) 176 (2017)
https://doi.org/10.1177/0960327116641735

In VivoAntimalarial Activity ofAnnona muricataLeaf Extract in Mice Infected withPlasmodium berghei

Voravuth Somsak, Natsuda Polwiang and Sukanya Chachiyo
Journal of Pathogens 2016 1 (2016)
https://doi.org/10.1155/2016/3264070

Metabolic host responses to malarial infection during the intraerythrocytic developmental cycle

Anders Wallqvist, Xin Fang, Shivendra G. Tewari, Ping Ye and Jaques Reifman
BMC Systems Biology 10 (1) (2016)
https://doi.org/10.1186/s12918-016-0291-2

Effects of 5,8-dimethylthieno[2,3-b]quinoline-2-carboxylic acid on the antioxidative defense and lipid membranes in Plasmodium berghei-infected erythrocytes

N.D. Gamboa de Domínguez, J. Charris, J. Domínguez, et al.
Experimental Parasitology 155 26 (2015)
https://doi.org/10.1016/j.exppara.2015.04.026

Late-stage systemic immune effectors in Plasmodium berghei ANKA infection: biopterin and oxidative stress

Funda Dogruman-Al, Ayşe Başak Engin, Neslihan Bukan, Seda Evirgen-Bostanci and Kemal Çeber
Pteridines 26 (3) 105 (2015)
https://doi.org/10.1515/pterid-2014-0019

Red Blood Cells Preconditioned with Hemin Are Less Permissive to Plasmodium Invasion In Vivo and In Vitro

Véronique Gaudreault, Jakob Wirbel, Armando Jardim, et al.
PLOS ONE 10 (10) e0140805 (2015)
https://doi.org/10.1371/journal.pone.0140805

Gonadal Steroids Negatively Modulate Oxidative Stress in CBA/Ca Female Mice Infected withP. bergheiANKA

Néstor Aarón Mosqueda-Romo, Ana Laura Rodríguez-Morales, Fidel Orlando Buendía-González, et al.
BioMed Research International 2014 1 (2014)
https://doi.org/10.1155/2014/805495

Oxidative Stress and Suicidal Erythrocyte Death

Florian Lang, Majed Abed, Elisabeth Lang and Michael Föller
Antioxidants & Redox Signaling 21 (1) 138 (2014)
https://doi.org/10.1089/ars.2013.5747

Antiplasmodial properties of kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii against chloroquine-resistant Plasmodium falciparum

MELISA I. BARLIANA, EKA W. SURADJI, RIZKY ABDULAH, et al.
Biomedical Reports 2 (4) 579 (2014)
https://doi.org/10.3892/br.2014.271

Functional significance of glutamate–cysteine ligase modifier for erythrocyte survival in vitro and in vivo

M Föller, I S Harris, A Elia, et al.
Cell Death & Differentiation 20 (10) 1350 (2013)
https://doi.org/10.1038/cdd.2013.70

New antimalarial indolone-N-oxides, generating radical species, destabilize the host cell membrane at early stages of Plasmodium falciparum growth: role of band 3 tyrosine phosphorylation

Antonella Pantaleo, Emanuela Ferru, Rosa Vono, et al.
Free Radical Biology and Medicine 52 (2) 527 (2012)
https://doi.org/10.1016/j.freeradbiomed.2011.11.008

The in vivo antimalarial activity of methylene blue combined with pyrimethamine, chloroquine and quinine

Giovanny Garavito, Stéphane Bertani, Miguel Quiliano, et al.
Memórias do Instituto Oswaldo Cruz 107 (6) 820 (2012)
https://doi.org/10.1590/S0074-02762012000600019

Effects of combined administration of vitamins C and E on some Plasmodium berghei-induced pathological changes and oxidative stress in mice

Mohammed A. Ibrahim, Murtala B. Isah, Azubuike I. Okafor, et al.
Comparative Clinical Pathology 21 (6) 1677 (2012)
https://doi.org/10.1007/s00580-011-1348-7

Signal transduction in Plasmodium-Red Blood Cells interactions and in cytoadherence

Laura N. Cruz, Yang Wu, Alister G. Craig and Célia R.S. Garcia
Anais da Academia Brasileira de Ciências 84 (2) 555 (2012)
https://doi.org/10.1590/S0001-37652012005000036

Decreased Redox-Sensitive Erythrocyte Cation Channel Activity in Aquaporin 9-Deficient Mice

Yuliya V. Kucherenko, Stephan M. Huber, Søren Nielsen and Florian Lang
The Journal of Membrane Biology 245 (12) 797 (2012)
https://doi.org/10.1007/s00232-012-9482-y

Glutathione export from human erythrocytes and Plasmodium falciparum malaria parasites

Margery A. Barrand, Markus Winterberg, Frances Ng, et al.
Biochemical Journal 448 (3) 389 (2012)
https://doi.org/10.1042/BJ20121050

Pyrimethamine induces oxidative stress in Plasmodium yoelii 17XL-infected mice: A novel immunomodulatory mechanism of action for an old antimalarial drug?

Martha Legorreta-Herrera, Raquel Retana-Ugalde, José Luis Ventura-Gallegos and Verónica Narváez
Experimental Parasitology 126 (3) 381 (2010)
https://doi.org/10.1016/j.exppara.2010.02.013

Targeting glutathione by dimethylfumarate protects against experimental malaria by enhancing erythrocyte cell membrane scrambling

Mehrdad Ghashghaeinia, Diwakar Bobbala, Thomas Wieder, Saisudha Koka, Jürgen Brück, Birgit Fehrenbacher, Martin Röcken, Martin Schaller, Florian Lang and Kamran Ghoreschi
American Journal of Physiology-Cell Physiology 299 (4) C791 (2010)
https://doi.org/10.1152/ajpcell.00014.2010

Effect of dequalinium on the oxidative stress in Plasmodium berghei-infected erythrocytes

Juan R. Rodrigues and Neira D. Gamboa
Parasitology Research 104 (6) 1491 (2009)
https://doi.org/10.1007/s00436-009-1355-7

Modification of oxidative status in Plasmodium berghei-infected erythrocytes by E-2-chloro-8-methyl-3-[(4'-methoxy-1'-indanoyl)-2'-methyliden]-quinoline compared to chloroquine

Juan Rodrigues, Jaime Charris, José Domínguez, Jorge Ángel and Neira Gamboa
Memórias do Instituto Oswaldo Cruz 104 (6) 865 (2009)
https://doi.org/10.1590/S0074-02762009000600008

N1‐acetyl‐N2‐formyl‐5‐methoxykynuramine modulates the cell cycle of malaria parasites

Alexandre Budu, Rafael Peres, Vânia Blasques Bueno, Luiz Henrique Catalani and Célia Regina da Silva Garcia
Journal of Pineal Research 42 (3) 261 (2007)
https://doi.org/10.1111/j.1600-079X.2006.00414.x

Purinoceptors are involved in the induction of an osmolyte permeability in malaria‐infected and oxidized human erythrocytes

Valérie Tanneur, Christophe Duranton, Verena B. Brand, et al.
The FASEB Journal 20 (1) 133 (2006)
https://doi.org/10.1096/fj.04-3371fje

Plasmodium falciparum-Infected Erythrocytes Increase Intercellular Adhesion Molecule 1 Expression on Brain Endothelium through NF-κB

Abhai K. Tripathi, David J. Sullivan and Monique F. Stins
Infection and Immunity 74 (6) 3262 (2006)
https://doi.org/10.1128/IAI.01625-05

Antimalarial efficacy of methylene blue and menadione and their effect on glutathione metabolism of Plasmodium yoelii-infected albino mice

Kavita Arora and Arvind K. Srivastava
Parasitology Research 97 (6) 521 (2005)
https://doi.org/10.1007/s00436-005-1478-4

Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions

Katja Becker, Leann Tilley, Jonathan L. Vennerstrom, et al.
International Journal for Parasitology 34 (2) 163 (2004)
https://doi.org/10.1016/j.ijpara.2003.09.011

Hyperhomocysteinemia in acute Plasmodium falciparum malaria: an effect of host–parasite interaction

R. Chillemi, B. Zappacosta, J. Simporè, et al.
Clinica Chimica Acta 348 (1-2) 113 (2004)
https://doi.org/10.1016/j.cccn.2004.05.007

Plasmodium Induces Swelling-activated ClC-2 Anion Channels in the Host Erythrocyte

Stephan M. Huber, Christophe Duranton, Guido Henke, et al.
Journal of Biological Chemistry 279 (40) 41444 (2004)
https://doi.org/10.1074/jbc.M407618200

Identification of a mitochondrial superoxide dismutase with an unusual targeting sequence in Plasmodium falciparum

Natasha Sienkiewicz, Wassim Daher, Daniel Dive, et al.
Molecular and Biochemical Parasitology 137 (1) 121 (2004)
https://doi.org/10.1016/j.molbiopara.2004.05.005

Glutathione – Functions and Metabolism in the Malarial Parasite Plasmodium falciparum

K. Becker, S. Rahlfs, C. Nickel and R. H. Schirmer
Biological Chemistry 384 (4) (2003)
https://doi.org/10.1515/BC.2003.063

MAHRP-1, a Novel Plasmodium falciparum Histidine-rich Protein, Binds Ferriprotoporphyrin IX and Localizes to the Maurer's Clefts

Cornelia Spycher, Nectarios Klonis, Tobias Spielmann, et al.
Journal of Biological Chemistry 278 (37) 35373 (2003)
https://doi.org/10.1074/jbc.M305851200

Thioredoxin Reductase Is Essential for the Survival ofPlasmodium falciparum Erythrocytic Stages

Zita Krnajski, Tim-Wolf Gilberger, Rolf D. Walter, Alan F. Cowman and Sylke Müller
Journal of Biological Chemistry 277 (29) 25970 (2002)
https://doi.org/10.1074/jbc.M203539200

Nutritional and racial determinants of the increase in plasma homocysteine levels after methionine loading

Jacques Simporè, Salvatore Pignatelli, Concetta Meli, et al.
Current Therapeutic Research 63 (7) 459 (2002)
https://doi.org/10.1016/S0011-393X(02)80051-0

Antiplasmodial Activity of Nitroaromatic and Quinoidal Compounds: Redox Potential vs Inhibition of Erythrocyte Glutathione Reductase

Philippe Grellier, Jonas Šarlauskas, Žilvinas Anusevičius, et al.
Archives of Biochemistry and Biophysics 393 (2) 199 (2001)
https://doi.org/10.1006/abbi.2001.2487

The malaria parasite Plasmodium falciparum possesses a functional thioredoxin system

Zita Krnajski, Tim-W. Gilberger, Rolf D. Walter and Sylke Müller
Molecular and Biochemical Parasitology 112 (2) 219 (2001)
https://doi.org/10.1016/S0166-6851(00)00372-8

An IRP-like protein from Plasmodium falciparum binds to a mammalian iron-responsive element

Mark Loyevsky, Timothy LaVaute, Charles R. Allerson, et al.
Blood 98 (8) 2555 (2001)
https://doi.org/10.1182/blood.V98.8.2555

Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum

Teresa Tiffert, Hagai Ginsburg, Miriam Krugliak, Barry C. Elford and Virgilio L. Lew
Proceedings of the National Academy of Sciences 97 (1) 331 (2000)
https://doi.org/10.1073/pnas.97.1.331

Management of HIV-infected pregnant patients in malaria-endemic areas: Therapeutic and safety considerations in concomitant use of antiretroviral and antimalarial agents

Chukwuemeka S. Okereke
Clinical Therapeutics 21 (9) 1456 (1999)
https://doi.org/10.1016/S0149-2918(00)80004-1

Plasmodium falciparum glutathione metabolism and growth are independent of glutathione system of host erythrocyte

Kodjo Ayi, Marina Cappadoro, Mario Branca, Franco Turrini and Paolo Arese
FEBS Letters 424 (3) 257 (1998)
https://doi.org/10.1016/S0014-5793(98)00185-9

The Malaria Parasite Supplies Glutathione to its Host Cell — Investigation of Glutathione Transport and Metabolism in Human Erythrocytes Infected with Plasmodium Falciparum

Hani Atamna and Hagai Ginsburg
European Journal of Biochemistry 250 (3) 670 (1997)
https://doi.org/10.1111/j.1432-1033.1997.00670.x

Resistance of glucose-6-phosphate dehydrogenase deficiency to malaria: effects of fava bean hydroxypyrimidine glucosides onPlasmodium falciparumgrowth in culture and on the phagocytosis of infected cells

H. Ginsburg, H. Atamna, G. Shalmiev, J. Kanaani and M. Krugliak
Parasitology 113 (1) 7 (1996)
https://doi.org/10.1017/S0031182000066221

Oxidative stress in malaria; implications for prevention and therapy

N S Postma, J Zuidema, E C Momm�rs and W M C Eling
Pharmacy World and Science 18 (4) 121 (1996)
https://doi.org/10.1007/BF00717727

The mode of action of the antimalarial artemisinin and its derivatives

Sumalee Kamchonwongpaisan and Steven R. Meshnick
General Pharmacology: The Vascular System 27 (4) 587 (1996)
https://doi.org/10.1016/0306-3623(95)02047-0

Plasmodium falciparum glutathione reductase exhibits sequence similarities with the human host enzyme in the core structure but differs at the ligand-binding sites

Sylke Müller, Katja Becker, Bärbel Bergmann, R.Heiner Schirmer and Rolf D. Walter
Molecular and Biochemical Parasitology 74 (1) 11 (1995)
https://doi.org/10.1016/0166-6851(95)02476-X

Redox processes in malaria and other parasitic diseases

K. Becker, M. Gui, A. Traxler, R. H. Schirmer and C. Kirsten
Histochemistry 102 (5) 389 (1994)
https://doi.org/10.1007/BF00268910