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Abstract – Giardia duodenalis and Cryptosporidium spp. are common human and animal pathogens. They
have increasingly been reported in dairy calves in recent years; however, multilocus genotyping information for
G. duodenalis and Cryptosporidium infecting pre-weaned dairy calves in southwestern China is limited. In the present
study, the prevalence of G. duodenalis and Cryptosporidium spp. in pre-weaned dairy calves in central Sichuan
province was determined and the pathogens were analyzed molecularly. Of 278 fecal samples from pre-weaned dairy
calves, 26 (9.4%) were positive for G. duodenalis and 40 (14.4%) were positive for Cryptosporidium spp.
Cryptosporidium bovis (n = 28), Cryptosporidium ryanae (n = 5) and Cryptosporidium parvum (n = 7) were detected.
All seven C. parvum isolates were successfully subtyped based on the gp60 gene sequence, and only IIdA15G1 was
detected. Multilocus sequence typing of G. duodenalis based on beta-giardin (bg), triose phosphate isomerase (tpi)
and glutamate dehydrogenase (gdh) genes revealed 19 different assemblage E multilocus genotypes (two known
and 17 unpublished genotypes). Based on eBURST analysis, a high degree of genetic diversity within assemblage E
was observed in pre-weaned dairy calves in Sichuan province. To the best of our knowledge, this is the first study using
multilocus sequence typing and eBURST analysis to characterize G. duodenalis in pre-weaned dairy calves in south-
western China.

Key words: Giardia duodenalis, Cryptosporidium, Multilocus genotyping, Pre-weaned dairy calves,
Sichuan province.

Résumé – Présence et génotypage de Giardia duodenalis et Cryptosporidium chez des veaux laitiers pré-sevrés
dans la province centrale du Sichuan, Chine. Giardia duodenalis et Cryptosporidium spp. sont des pathogènes
humains et animaux communs. Ils ont été signalés de plus en plus chez les veaux laitiers au cours des dernières
années; cependant, l’information de génotypage multilocus pour G. duodenalis et Cryptosporidium infectant les
veaux laitiers pré-sevrés dans le sud-ouest de la Chine est limitée. Dans la présente étude, la prévalence de
G. duodenalis et de Cryptosporidium spp. chez les veaux laitiers pré-sevrés dans la province centrale du Sichuan a
été déterminée et les pathogènes ont été analysés moléculairement. Dans 278 échantillons fécaux de veaux laitiers
pré-sevrés, 26 (9.4 %) étaient positifs pour G. duodenalis et 40 (14.4 %) étaient positifs pour Cryptosporidium spp.
Cryptosporidium bovis (n = 28), Cryptosporidium ryanae (n = 5) et Cryptosporidium parvum (n = 7) ont été
détectés. Les sept isolats de C. parvum ont été sous-typés avec succès sur la base de la séquence du gène gp60 et
seul IIdA15G1 a été détecté. Le typage multilocus de G. duodenalis basé sur les gènes de béta-giardine (bg), triose
phosphate isomérase (tpi) et glutamate déshydrogénase (gdh) a révélé 19 génotypes différents d’assemblage
multilocus E (deux génotypes connus et 17 non-publiés). D’après l’analyse eBURST, on a observé un degré élevé
de diversité génétique au sein de l’assemblage E chez les veaux laitiers pré-sevrés de la province du Sichuan.
À notre connaissance, il s’agit de la première étude utilisant le typage de séquence multilocus et l’analyse eBURST
pour caractériser G. duodenalis chez des veaux laitiers pré-sevrés dans le sud-ouest de la Chine.
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Introduction

Protists of the genera Giardia and Cryptosporidium infect a
wide range of animals as well as humans [3, 12, 19]. Typically,
the infection is acquired following the ingestion of highly
resilient, infective stages (oocysts or cysts) via the fecal-oral
route [3, 4]. Disease is commonly associated with clinical signs
including diarrhea, dehydration, fever, inappetence and anorex-
ia. Infections are often self-limiting in immune-competent indi-
viduals [2, 31], but can be chronic and severe in infants, elderly
people, and immune-compromised individuals [9, 16].

Ruminants are recognized as a significant reservoir of
Giardia and Cryptosporidium taxa that infect animals and
humans [19, 21]. Current data indicate that of the eight assem-
blages within Giardia duodenalis, assemblages A and E and the
Cryptosporidium species C. parvum, C. andersoni, C. ryanae,
and C. bovis predominate in cattle worldwide [4, 20].

Unlike in other countries (e.g. Australia, Sudan, Japan and
India) [6, 14, 15, 24], where C. parvum is known to be the pre-
dominant species in pre-weaned calves, this does not appear to
be the case everywhere in China. Some studies have shown that
C. parvum is a major species in pre-weaned calves in some
regions, whereas C. bovis is a major species in other regions
[5, 25, 28].

According to the National Bureau of Statistics of the Peo-
ple’s Republic of China, in 2016, the total population of dairy
cattle in Sichuan Province was 176 thousand heads. However,
no information about G. duodenalis and Cryptosporidium
infection of pre-weaned dairy calves was previously available
in Sichuan Province. We undertook a molecular epidemiolog-
ical study to obtain a preliminary snap-shot of the prevalence
of G. duodenalis assemblages and Cryptosporidium genotypes
in pre-weaned calves in Sichuan province, China.

Materials and methods
Sample collection

We collected 278 rectal fecal samples from pre-weaned
dairy calves (<1 month of age) from 10 farms with a history
of bovine diarrhea in 10 regions in Sichuan province, south-
western China, between June 2016 and March 2017. Collection
sites included: Chengdu (104�060E, 30�570N), Hongya
(103�370E, 29�910N), Aba (102�220E, 31�900N), Meishan
(103�840E, 30�080N), Mianyang (104�670E, 31�470N), Ziyang
(104�620E, 30�130N), Anyue (105�330E, 30�100N), Qionglai
(103�460E, 30�410N), Qingbaijiang (104�250E, 30�880N), and
Deyang (104�390E, 31�130N). The 10 farms are distributed
in central Sichuan Province (Fig. 1). The city-level map was
provided by the National Geomatics Centre of China (National
Geomatics Centre of China, Beijing, China, http://ngcc.sbsm.
gov.cn/).

Of the 10 farms, six (Chengdu, Hongya, Aba, Mianyang,
Ziyang, and Qionglai) are intensive feeding farms, while the
other four are free-ranging. For intensive farms, there were
approximately 1000–2500 cattle per farm, with more than
100 pre-weaned dairy calves, and the fecal samples were
randomly collected from about 20% in each farm. For free-
ranging farms, there were approximately 100–120 cattle per

farm and the herd sizes of pre-weaned dairy calves were less
than 50; in this case we collected fecal samples from all of
the pre-weaned dairy calves at each farm (Table S1). In inten-
sive farms, calves were bred in different calf stalls, with one
hour outdoor time after eating and excretion in the morning
and afternoon, respectively. Calves shared one yard during the
outdoor time in intensive farms. In free-ranging farms, calves
were kept in a field with a half cover and were raised together.
The farms we selected had solely cattle, and no other animals.

Fecal samples were collected from the rectum using dis-
posable gloves, transferred into disposable plastic bags, and
stored in 2.5% potassium dichromate at 4 �C.

DNA extraction

Before DNA extraction, feces were washed with distilled
water to remove potassium dichromate. Genomic DNA was
extracted from 250 mg (approximately) of individual samples
using the Power Soil DNA isolation kit (MOBIO, USA),
according to the manufacturer’s instructions, and frozen at
�20 �C until use.

PCR amplification and sequencing

G. duodenalis was detected by nested PCR amplification of
the bggene. The bg-positive samples were further characterized
by amplifications of gdh and tpi. Genotyping of Cryptosporid-
ium was based on amplification of the small subunit (SSU)
rRNA gene by nested PCR and subsequent sequence analysis.
All the C. parvum isolates were further characterized by ampli-
fication of the gp60 gene. The primers and amplification condi-
tions in this study were described previously [1, 11, 23].
Positive and negative controls were included in each test. The
secondary PCR products were visualized under UV light after
electrophoresis on a 1% agarose gel mixed with Golden View.

All positive secondary PCR products were sent to Invitrogen
(Shanghai, China) and sequenced in both directions. Sequences
were aligned with reference sequences from GenBank using
BLAST (http://blast.ncbi.nlm.nih.gov) and ClustalX.

A previous nomenclature system was used to name
subtypes at each genetic locus [29, 30]. Specimens that were
successfully subtyped at all three loci were included in multi-
locus genotyping of G. duodenalis. The genetic pedigree of the
assemblage E multilocus genotypes (MLGs) was assessed by
using eBURST 3.0 (http://eBURST.mlst.net).

Statistical analysis

The v2 test was used to compare the infection rates of
G. duodenalis and Cryptosporidium in different feeding
patterns. Differences were considered significant at p < 0.05.

Results and discussion

G. duodenalis was detected in 9.4% of 278 pre-weaned
dairy calves on 6 of 10 farms, with prevalences ranging from
7.7% to 46.4% (Table 1). Its prevalence shows substantial
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Figure 1. Distribution of sampling sites in Sichuan province in this study.

Table 1. Prevalence of Cryptosporidium and G. duodenalis in pre-weaned diary calves in Sichuan province.

Region No. tested
Cryptosporidium Cryptosporidium No. (%)

of positive specimens G. duodenalis
G. duodenalis
infection rateC. bovis C. ryanae C. parvum

Chengdua 39 2 1 3 (7.7%) 3 7.7%
Hongyaa 24 1 1 (4.2%)
Abaa 20 7 7 (35.0%) 2 10.0%
Meishanb 20
Mianyanga 58 8 3 11 (19.0%)
Ziyanga 26 8 8 (30.8%) 2 7.7%
Anyueb 22 2 2 (9.1%) 3 13.6%
Qionglaia 28 4 4 (14.3%) 13 46.4%
Qingbaijiangb 20 2 2 (10.0%) 3 15.0%
Deyangb 21 1 1 2 (9.5%)
Total 278 28 5 7 40 (14.4%) 26 9.4%

a Intensive farming;
b free-ranging.
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differences, ranging from 7.1% to 60.1% in other studies in
China [7, 13, 18, 26, 29]. In this study, the overall infection
rate in southwestern China was close to the prevalence in north-
western (9.7% [18]), northeastern (13.3% [13]) and north China
(7.1% [7]), but much lower than the infection rates in central
(17.6% [26]) and southeastern (60.1% [29]) China. Prior to
the present study, these results were interpreted as related to
differences in geographic distribution, environmental manage-
ment and cultivation scale [7, 13, 18, 26, 29]. Cattle were kept
in groups or in free stalls, which might promote the transmis-
sion of G. duodenalis infection among animals and lead to
the high infection rates [26, 29]. Furthermore, we analyzed
the infection rates between intensive feeding and free-ranging
farms; there was no significant difference between the two
breeding patterns (X2 = 0.629, df = 1, p = 0.428).

Cryptosporidium was detected in 14.4% of 278 fecal sam-
ples, on 9 out of 10 farms, with prevalences ranging from 4.2%
to 35.0% (Table 1). The overall infection rate for Cryptosporid-
ium is lower than the average prevalence of 19.5% reported
previously in pre-weaned cattle in China [5], but similar to
the infection rate reported in Xinjiang (15.6%) [17], and much
higher than the rate in Hebei and Tianjin, China (1.0%) [7].
Prevalence of Cryptosporidium was significantly different
(X2 = 4.924, df = 1, p = 0.026) between intensive feeding
and free-ranging farms in this study, which suggests that culti-
vation scale may lead to differences in infection rates with
Cryptosporidium. Other studies also showed that geographic
distribution and host health status may lead to the difference

[5, 10, 17]. Three species of Cryptosporidium (28 C. bovis,
7 C. parvum [subtype IIdA15G1] and 5 C. ryanae) were iden-
tified in this study. Previous studies have shown that C. parvum
is a major species in pre-weaned calves in Beijing [10],
Xinjiang [17] and Ningxia [8], whereas C. bovis predominated
in pre-weaned calves in this study, similar to reports from
Henan [27] and Heilongjiang [32].

Giardia duodenalis in all 26 positive samples corresponded
to assemblage E. G. duodenalis infection is relatively common
in pre-weaned dairy calves. We further characterized the 26
G. duodenalis bg-positive samples at the tpi and gdh loci.
Among these 26 samples, the tpi and gdh loci were success-
fully amplified and sequenced in 24 and 25 specimens, respec-
tively. The bg, tpi and gdh loci all showed high levels of
sequence polymorphism; seven subtypes were identified
at each locus. Of the bg subtypes, E1 (MF671885), E8
(KY769093), E9 (KY769091), and E15 (KT698677) were
known, and E13 (MF671880), E14 (MF671883), and E16
(MF671886) were unpublished. At the tpi locus, five known
subtypes E1 (MF671900), E3 (KT922259), E9 (EF654690),
E15 (KY432848) and E19 (KY769103) and two unpublished
subtypes, E21 (MF671904) and E24 (MF671907), were found.
The sequences from the gdh locus represented five known
subtypes E1 (MF671891), E3 (KT369780), E8 (KT368785),
E10 (KT698971), E13 (KY432838) and two unpublished
subtypes, E19 (MF671896) and E20 (MF671899).

For G. duodenalis, multi-locus genotyping analysis sug-
gested a high genetic diversity of assemblage E in pre-weaned

Table 2. Multilocus sequence genotypes of G. duodenalis in pre-weaned dairy calves in Sichuan province.

Isolate Geographic source Subtype MLG

bg tpi gdh

ABG3417 A’ba E9 E15 #E19/MF671896 #MLGE72
ABG3422 E1 E15 #E19/MF671896 #MLG E74
AYG6943 Anyue #E13/MF671880 E1 E10 #MLG E70
AYG6950 #E14/MF671883 E3 E10 #MLG E67
AYG6953 E1 E3 E3 #MLG E62
CDG16089 Chengdu E9 E3 E1 #MLG E61
CDG16090 E8 E9 E10 #MLG E60
CDG16100 E9 E19 E1 #MLG E68
QBJG13 Qingbaijiang #E14/MF671883 E3 E10 #MLG E67
QBJG17 #E16/MF671886 E3 E3 #MLG E63
QBJG18 E9 E3 E10 MLG E3
QLG5065 Qionglai E1 #E24/MF671907 #E19/MF671896 #MLG E75
QLG5066 E9 E3 E10 MLG E3
QLG5067 E1 E3 E8 #MLG E64
QLG5070 E1 E15 E1 #MLG E65
QLG5071 E9 E1 #E19/MF671896 #MLG E73
QLG5073 E1 E10
QLG5074 E1 E15 E1 #MLG E65
QLG5075 #E13/MF671880 E3 E1 MLG E13
QLG5076 #E13/MF671880 E3 #E20/MF671899 #MLG E59
QLG5083 E1 E3 E1 #MLG E66
QLG5091 #E13/MF671880 E3 E1 MLG E13
QLG5092 #E13/MF671880 E3 E1 MLG E13
QLG5093 #E13
ZYG6863 Ziyang E9 E1 E1 #MLGE71
ZYG6844 E15 #E21/MF671904 E13 #MLG E69

# Unpublished subtypes and MLGs.
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dairy calves in this study. Based on the combination of bg, tpi
and gdh loci, 19 MLGs of assemblage E were detected
(Table 2). A high degree of nucleotide variation in assemblage
E has been also detected in previous studies [18, 22, 26, 29].
Of the 19 MLGs, 17 were unpublished MLGs. The majority
of MLGs were MLG-E3 and MLG-E13, which have also been
detected in dairy calves in Shanghai [29]. To further analyze
the evolutionary descent of the 19 assemblage E MLGs, we
used eBURST analysis of the 19 assemblage E MLGs and
58 reference MLGs, which revealed two clonal complexes
and seven singletons (Fig. 2). MLG-E3 is the primary founder
of clonal complex 1, which is consistent with findings in a pre-
vious study in Shanghai [29]. The majority of MLGs (14/19)
originated from MLG-E3. Furthermore, MLG-E60 is a variant
of clonal complex 2, and MLG-E59 and MLG-E70 were sin-
gletons. The latter three MLG subtypes showed distant evolu-
tion from other assemblage E MLGs, which may indicate
substantial differences in their evolutionary divergence [29].

Conclusion

This is the first study to genotype G. duodenalis and
Cryptosporidium in pre-weaned dairy calves in Sichuan pro-
vince. C. bovis and G. duodenalis assemblage E are the dom-
inant species in pre-weaned dairy calves in Sichuan, and high
genetic diversity of assemblage E MLGs was observed.
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