Pneumocystis jirovecii (human-specific Pneumocystis species) is an atypical fungus which causes severe pneumonia in immunocompromised patients (Stringer et al., 2002). Profound deficiency of cell-mediated immunity as a consequence of HIV infection is a major host factor for developing Pneumocystis pneumonia (PCP) (Walzer et al., 2005). The microorganism remains the most frequent AIDS defining opportunistic pathogen in France and other developed countries despite the decline in PCP incidence related to the wide use of highly active antiretroviral therapy (Institut de Veille Sanitaire, 2002). Treatments for transplantation, graft, malignancy, and connective tissue disease are also host factors for PCP occurrence in other immunocompromised patients not infected with HIV (Sepkowitz et al., 1995).

Over the past fifteen years, long term pulmonary carriage of P. jirovecii in healthy persons has been re-evaluated and PCP is now frequently considered to result from de novo infection rather than from reactivation of latent infection. At the same time, PCR assays have revealed that persons having an unusual non-bilateral interstitial pneumonia due to P. jirovecii can be infected with only a few organisms (Peterson et al., 2005). In this context, terms such as carriage or colonization are frequently used. For example, it has been reported that immunocompromised patients – and also immunocompetent patients who have acute or chronic lungs diseases – can frequently be colonized with the microorganism (Peterson et al., 2005).

It is now accepted that Pneumocystis organisms infecting each mammalian species are host-specific and the hypothesis of an animal reservoir for P. jirovecii can be excluded (Stringer et al., 2002). An exosaprophytic form of the fungus cannot be strictly ruled out. However, these data point toward the potential for the specific host to serve as its own reservoir and for Pneumocystis infection in humans as an anthropoposis with humans as a reservoir for P. jirovecii. This review highlights the main data on host-to-host transmission of Pneumocystis in rodent models and in humans by the airborne route and provides a rationale for considering the occurrence of nosocomial infections and measures for their prevention.

Summary:

Airborne transmission of Pneumocystis sp. from host to host has been demonstrated in rodent models and several observations suggest that interindividual transmission occurs in humans. Moreover, it is accepted that the Pneumocystis organisms infecting each mammalian species are host specific and that the hypothesis of an animal reservoir for Pneumocystis jirovecii (P. jirovecii), the human-specific Pneumocystis species, can be excluded. An exosaprophytic form of the fungus cannot be strictly ruled out. However, these data point toward the potential for the specific host to serve as its own reservoir and for Pneumocystis infection in humans as an anthropoposis with humans as a reservoir for P. jirovecii. This review highlights the main data on host-to-host transmission of Pneumocystis in rodent models and in humans by the airborne route and provides a rationale for considering the occurrence of nosocomial infections and measures for their prevention.

KEY WORDS: Pneumocystis jirovecii, nosocomial infections, genotyping.
This review highlights the main data on host-to-host transmission of *Pneumocystis* in rodent models and in humans by the airborne route and provides a rationale for considering the occurrence of nosocomial infections and measures for their prevention.

AIRBORNE ACQUISITION AND TRANSMISSION OF PNEUMOCYSTIS SP. IN RODENT MODELS

Pneumocystis sp. infects numerous domestic or wild mammals causing severe pneumonia in those that are immunodeficient or experimentally immunosuppressed (Dei-Cas *et al*., 1998). Because clinical presentation of PCP in animals is close to that of immunocompromised humans, experimental PCP has been studied. The contribution of animal models to the knowledge of *Pneumocystis* epidemiology appears to be major. *Pneumocystis* acquisition by the airborne route in rats was clearly established in the early 1980’s (Hughes, 1982; Hughes *et al*., 1983). It was observed that no germ-free rats immunocompromised with corticosteroid developed PCP when maintained in germ-free isolators. Conversely, exposure of these animals to ambient air from animal facilities, led to PCP occurrence, as did the introduction of a conventional rat into isolators. *Pneumocystis* is a highly transmissible microorganism in mice. A one day-exposure is enough for airborne transmission of the infection either from mice with corticosteroid-induced PCP to susceptible SCID mice (Soulez *et al*., 1991) or from SCID mice with PCP to immunocompetent mice (Soulez *et al*., 1991; Dumoulin *et al*., 2000). Immunocompetent animals are able to harbor low parasite rates for weeks without developing acute PCP (Dumoulin *et al*., 2000; Chabe *et al*., 2004). Moreover, using the experimental SCID-Balb/c mouse transmission model, it has been proven that *Pneumocystis*-carrying Balb/c mice are able to transmit the infection either to susceptible SCID mice or to naive healthy mice. The secondly exposed “healthy” hosts are able to transmit the fungus to susceptible hosts which developed PCP (Dumoulin *et al*., 2000; Gigliotti *et al*., 2003; Chabe *et al*., 2004).

THE INFECTIVE FORM OF PNEUMOCYSTIS SP.

Although *Pneumocystis* DNA has been detected in air of the Oxfordshire country (Wakefield, 1996) and in pond water (Casanova-Cardiel *et al*., 1997), no exosaprophytic form consistent with an environmental reservoir has been discovered yet. At the same time, the airborne transmission of the fungus from host-to-host has been demonstrated in models as described above. However, the infective form acquired in natural conditions remains unknown. In Hughes’s studies, exposure of the immunocompromised germ-free rats to *Pneumocystis* infected lung tissues into the isolator did not result in PCP (Hughes, 1982; Hughes *et al*., 1983). The authors concluded to a low viability of known stages, i.e. the cysts, intracystic bodies and trophic forms, in the environment or an exosaprophytic form yet to be discovered. Greusy and colleagues had visualized a mature cyst containing intracystic bodies in the bronchial lumen of a SCID mouse developing experimental PCP suggesting that it may be exhaled by the infected subject in its air environment (Greusy *et al*., 1996). However, the freshly intra cystic bodies, i.e. the small trophic forms, rather than the entire cyst may be released in the lumen, expectorated via the Pflugge’s droplets and further transmitted to susceptible contact hosts. It is noteworthy that the small trophic form has the same size from 1 to 3 µm as other pathogens such as *Mycobacterium tuberculosis* that are successfully spread deep into the lung via this transmission route. This was previously postulated by Ng and colleagues (Ng *et al*., 1997).

AIRBORNE ACQUISITION AND TRANSMISSION OF P. JIROVECII IN HUMANS

AIRBORNE ACQUISITION OF P. JIROVECII

It is assumed that the acquisition of *P. jirovecii* organisms by humans takes place via the airborne route and inhalation. This theory is supported by experiments in animal models combined with the fact that *P. jirovecii* has a high tropism for the human lungs. However, the intake of the microorganism from the air has not been demonstrated. Tasci and colleagues recently reported an interesting observation of a patient with bronchial carcinoma who developed PCP (Tasci *et al*., 2003). Computed tomography showed a stenosis of the bronchus–intermedius, infiltrates of the complete left lung and only the right upper lobe, and absence of infiltrates of the post obstructive areas. It was considered that the decreased ventilation due to the airway obstruction limited the spread of *P. jirovecii* and the development of pneumonia foci in these areas. This is consistent with the fact that *P. jirovecii* is inhaled.

AIRBORNE TRANSMISSION OF P. JIROVECII

Although the *P. jirovecii* exit mechanism from the lungs has not firmly been demonstrated, the microorganism
may be exhaled by infected patients in their air environment in the course of ventilation. This was suggested by the fact that *Pneumocystis* DNA has been detected in air filters placed in hospital rooms of patients who developed PCP, *P. jirovecii* genotypes in air samples matching those identified in corresponding patients (Bartlett et al., 1994; Olsson et al., 1998). Moreover, *P. jirovecii* DNA was detected in the air filter membrane of an intubation system from a ventilated patient with PCP. This observation established that *P. jirovecii* DNA can be exhaled by an infected patient (Sing et al., 1999a). *P. jirovecii* cDNA was also detected using RT-PCR in air samples from the rooms of patients who developed PCP, showing that the microorganism may still be viable and therefore potentially infectious in the patient’s environment (Latouche et al., 2001; Mahler et al., 2001). A report by Vargas and colleagues is consistent with transmission by the airborne route. *P. jirovecii* DNA was amplified using PCR in samples of upper respiratory tracts from health care workers in situations of close contact with a PCP patient. Nasopharyngeal aspirates of 3/3 PCP patient’s contacts tested positive for *P. jirovecii* DNA (Vargas et al., 2000).

Clusters of *Pneumocystis* pneumonia in hospitals

Interindividual transmission of *P. jirovecii* has been suspected through the occurrence of PCP case clusters in hospitals. Main clusters that have been reported concerned a number of patients from 2 to 22. They have been observed in units of pediatrics, oncology, intensive care, renal transplantation and infectious diseases (Vanek et al., 1952; Hamperl, 1956; von Reitsebauer et al., 1956; von Harnack, 1960; Post et al., 1964; Santiago-Delpin et al., 1988; Kovaleva et al., 1991; other references are reviewed in Table I).

Helweg Larsen and colleagues, and Olsson and colleagues used a genotyping approach for evaluation of PCP clusters. However, they did not provide evidence for single-source outbreaks because *P. jirovecii* genotypes from patients suspected to be the sources of the microorganism did not completely match those identified in patients suspected to be susceptible contacts (Helweg-Larsen et al., 1998; Olsson et al., 2001). Recent analyses at the molecular level strongly suggested that interhuman transmission of *P. jirovecii* occurred in two clusters among renal transplant recipients, one in an adult unit (Rabodonirina et al., 2004), and the other in a pediatric unit (Hocker et al., 2005). The multi-target PCR-single-strand conformation polymorphism method was used to type *P. jirovecii* organisms. In the first cluster, nosocomial transmission from HIV-positive patients with PCP to ten patients who developed PCP over a 3-year period was suspected because the two categories of patients shared the same hospital building, were not isolated, and were receiving no or sub-optimal anti-PCP prophylaxis. Among the 45 patients...
with PCP hospitalized during the 3-year period, eight renal transplant recipients and six HIV-infected patients may have encountered at least one (range 1-7) patient with active PCP within the three months prior to the diagnosis of their own PCP episode. In six instances (five renal transplant recipients, one HIV-infected patient), molecular typing supported the occurrence of interhuman transmission because the cases harbored the same \textit{P. jirovecii} molecular type as that found in the encountered PCP patients. In the second cluster, three pediatric patients acquired the same two strains of \textit{P. jirovecii}, an infant with mitochondriopathy and PCP being the probable index patient. Transmission events would have occurred in the absence of prophylaxis during hospitalization in rooms eight to ten meters apart, on the same floor, and in one instance during a summer camp organized by the pediatric nephrology unit. The results of a recent study by de Boer and colleagues (de Boer et al., 2007) who investigated a PCP case cluster in renal transplant recipients using \textit{P. jirovecii} genotyping at the internal transcribed spacers (ITSs) of the nuclear rRNA operon and analysis of encounters between patients are compatible with interhuman transmission.

Clusters of \textit{Pneumocystis} pneumonia within households

Interindividual transmission of \textit{P. jirovecii} has also been suspected through the occurrence of case clusters within households (Watanabe et al., 1965; Latouche et al., 1997; Miller et al., 2002). Particularly, Miller and colleagues investigated the case of a mother and her 4.5 week-old infant who had PCP contemporaneously. The time course of clinical symptoms combined with \textit{P. jirovecii} genotyping which showed the same genotype in samples from the two patients rendered the transmission of the microorganism from mother to infant highly probable (Miller et al., 2002).

Colonized subjects as potential sources of \textit{P. jirovecii}

Until the early nineties, PCP in immunocompromised patients was thought to arise through reactivation of latent infection early acquired in childhood. This hypothesis was challenged and now PCP is considered to result frequently from \textit{de novo} acquisition of the microorganism (Morris et al., 2002). Today, instead of long term pulmonary carriage in the general population, incidental and transient colonization may be the rule (Stringer et al., 2002). Indeed, several populations have been identified as being colonized by the fungus. Low burden of \textit{P. jirovecii} organisms have been detected using PCR assays in patients with various levels of immunodeficiency (Nevez et al., 1999a; Nevez et al., 1999b), with acute or chronic pulmonary diseases (Caldron et al., 1996; Armbruster et al., 1997; Sing et al., 1999b; Nevez et al., 2002), immunonaive infants with \textit{P. jirovecii} primary infection (Nevez et al., 2001a, Vargas et al., 2001), pregnant women with physiological immunity changes (Vargas et al., 2003), and health care workers in contact with patients with PCP (Miller et al., 2001, Durand-Joly et al., 2003, reviewed in Peterson et al., 2005). In fact, \textit{Pneumocystis} infections can have a large spectrum of presentations, of which PCP in immunocompromised patients may represent only a part, while mild infections such as colonization may constitute the major part. Investigations of the human reservoir of \textit{P. jirovecii} by genotyping have been based on analyses of \textit{P. jirovecii} organisms from PCP patients (Helweg-Larsen et al., 1998; Olsson et al., 2001; Rabodonirina et al., 2004; Hocker et al., 2005). Other investigations have considered the potential role of human populations that develop mild \textit{Pneumocystis} infections (Hauser et al., 2000; Miller et al., 2001; Nevez et al., 2001b; Nevez et al., 2003; Totet et al., 2003a; Totet et al., 2003b). For example, Nevez and colleagues observed shared features of \textit{P. jirovecii} ITS types in PCP patients, in colonized adult patients, and in infants with \textit{Pneumocystis} primary infection from the same area, consistent with their contribution to a common reservoir for the microorganism (Nevez et al., 2003; Totet et al., 2003a, Totet et al., 2003b). In the study by Miller and colleagues, \textit{P. jirovecii} ITS genotypes in health care workers partly matched those found in PCP patients (Miller et al., 2001). For these reasons, the role of health care workers in \textit{P. jirovecii} circulation in the hospital was discussed.

Transmission of possible resistant \textit{P. jirovecii} organisms in human populations

The analysis of dihydropteroate synthase (DHPS) locus of \textit{P. jirovecii} may serve as a useful circulation marker of the microorganism in the human reservoir. DHPS is the enzymatic target of sulfonamides, which are the major drugs for PCP prophylaxis and treatment. \textit{P. jirovecii} organisms with nonsynonymous mutations at positions 165 and 171 of the DHPS locus have been detected in PCP patients. It is assumed that these mutations result in reduction the affinity of DHPS with receptors for sulfonamides and therefore in lower sensitivity or even resistance of mutant \textit{P. jirovecii} organisms to these drugs. Prior exposure to sulfonamide drugs has been identified as a predictor of mutant genotypes (reviewed in Totet et al., 2004). In addition the city in which a patient resides has also been identified as an independent risk factor (Huang et al., 2000; Kazanjian et al., 2000), a factor that supports the hypothesis that \textit{P. jirovecii} is transmitted from infected treated patients to susceptible untreated patients, either directly or through a common envi-
enronmental source. Totet and colleagues identified \textit{P. jiroveci} genotypes at the DHPS locus in immunocompetent infants with primary infection and immunosuppressed adults with PCP (Totet \textit{et al.}, 2004). Both groups of patients were monitored in the same city. The results pointed out identical features of \textit{P. jiroveci} DHPS genotypes in the two groups providing additional arguments in favor of the fungus circulation within a reservoir made up of persons with different clinical presentations of \textit{P. jiroveci} infection. In fact, all persons parasitized by \textit{P. jiroveci} whatever their risk factor for infection and the form of parasitism they have, may act as interwoven circulation networks of \textit{P. jiroveci}. This hypothesis is consistent with available data on \textit{Pneumocystis} sp. transmission in animal models as described above.

CONCLUSIONS

Recent data support the concept of nosocomial \textit{P. jiroveci} infection and permit to establish a new policy for isolation of patients as standard practice. Indeed, prophylaxis of PCP based on chemotherapy among patients known to be immunosuppressed and consequently at risk for the infection remains essential. However, given the potential resistance to anti \textit{Pneumocystis} drugs, it may not be sufficient to achieve prevention. At least, it seems now prudent for a patient at risk for PCP to not share a hospital room with a patient who has active PCP.

Further studies to establish the role of colonized patients as infective sources of \textit{P. jiroveci} are needed. Likewise, investigations are needed to delineate the role of \textit{P. jiroveci} in disease of colonized subjects. It seems appropriate to expect that the infection provokes at least mild or moderate respiratory illness, with the microorganism acting as a co-morbidity factor. In this context, the use of specific treatments for \textit{P. jiroveci} would be justified and reduce not only the global morbidity due to the microorganism but above all its reservoir.

ACKNOWLEDGEMENTS

This review is partly supported by the “Agence Française de Sécurité Sanitaire de l’Environnement et du Travail. AFSSET”, contract N° EST-2006/1/41 (AT, GN), the Swiss National Science Foundation, grant 310000-112360 (PMH), the FIS-Europe “Carlos III” Institute of Health 03/1743 and ANR projects: “\textit{Pneumocystis} PathoGenoMics” (ERA-NET 2006-2009) and “Community ecology of rodents and their pathogens in South-East Asia: effects of biodiversity changes and implications for health ecology” (CeroPath) (MC, EDC).

REFERENCES

Hauser P.M., Blanc D.S., Bille J., Nahimana A. & Francioli P. Carriage of Pneumocystis carinii by immunosuppressed patients and molecular typing of the organisms. AIDS, 2000, 14, 461-463.

Sing A., Wonhas C., Bader L., Luther M. & Heesemann J. Detection of *Pneumocystis carinii* DNA in the air filter of a ventilated patient with AIDS. *Clinical Infectious Diseases*, 1999a, 29, 952-953.

Sing A., Roggenkamp A., Autenrieth I.B. & Heesemann J. *Pneumocystis carinii* carriage in immunocompetent patients with primary pulmonary disorders as detected by single or nested PCR. *Journal of Clinical Microbiology*, 1999b, 37, 3409-3410.

