Comparative Evaluation of Western Blotting in Hepatic and Pulmonary Cystic Echinococcosis

Summary:
Many serological tests are widely used in the diagnosis of cystic echinococcosis (CE), caused by the larval stages of Echinococcus granulosus. The present study was carried for differentiation between hepatic and pulmonary cystic echinococcosis by Western Blotting (WB). A total of 121 sera from patients with hepatic CE (37), pulmonary CE (31) and controls (53; consisting of six healthy, seven Hymenolepis nana infection, 20 hepatic and 20 pulmonary diseases other than CE) were examined. In all of the CE patients, E. granulosus infection was confirmed by surgical intervention. Sera were previously tested using IHA and ELISA to detect the E. granulosus specific antibodies. Sera from hepatic cases of CE reacted with 16 polypeptides of 6-116 kDa and sera from pulmonary cases of CE reacted with 14 polypeptides of 4-130 kDa by Western Blotting. The WB test enabled the detection of antibodies 24, 44-46, 100, 110, 116 and 120-124 kDa in molecular weight in 81.3 %, 75.0 %, 87.5 %, 71.9 %, 84.4 % and 65.6 % of the patients, respectively. In the pulmonary CE samples sera WB test enabled the detection of antibodies 24, 44-46, 100, 110, 116 and 120-124 kDa in molecular weight in 81.3 %, 75.0 %, 87.5 %, 71.9 %, 84.4 % and 65.6 % of the patients, respectively. We indicated that the antigenic components of high molecular weight can be good candidates for differentiation of hepatic CE from pulmonary CE.

KEY WORDS: cystic echinococcosis, Echinococcus granulosus, hepatic, pulmonary, Western Blotting, IHA, ELISA.

The present study was carried for differentiation in infection, 20 hepatic and specific antibodies. Sera from hepatic 2001). On the other cystic echinococcosis, an infection was confirmed by surgical intervention. Sera were previously tested using IHA and ELISA to detect the E. granulosus specific antibodies. Sera from hepatic cases of CE reacted with 16 polypeptides of 6-116 kDa and sera from pulmonary cases of CE reacted with 14 polypeptides of 4-130 kDa by Western Blotting. The WB test enabled the detection of antibodies 24, 44-46, 100, 110, 116 and 120-124 kDa in molecular weight in 81.3 %, 75.0 %, 87.5 %, 71.9 %, 84.4 % and 65.6 % of the patients, respectively. In the pulmonary CE samples sera WB test enabled the detection of antibodies 24, 44-46, 100, 110, 116 and 120-124 kDa in molecular weight in 81.3 %, 75.0 %, 87.5 %, 71.9 %, 84.4 % and 65.6 % of the patients, respectively. We indicated that the antigenic components of high molecular weight can be good candidates for differentiation of hepatic CE from pulmonary CE.

* Dokuz Eylül University, Medical Faculty, Department of Parasitology, İzmir, Turkey.
** Training and Research Hospital for Chest Diseases and Chest Surgery, İzmir, Turkey.
*** Ege University, Medical Faculty, Department of Parasitology, İzmir, Turkey.

Correspondence: Ciler Akisu M.D., Dokuz Eylül University, Medical Faculty, Department of Parasitology, 35340 Inciralti-Izmir, Turkey. Tel.: +90 232 412 45 40 – Fax: +90 232 250 05 41. E-mail: ciler.akisu@deu.edu.tr

Copyright © 2006. Published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
to be more important for hepatic CE (Verastegui et al., 1992).

The aims of this present study were to assess the diagnostic sensitivity and specificity of WB in patients with liver and pulmonary CE and to compare the antigenic bands that were obtained by WB in both localizations.

MATERIALS AND METHODS

ANTIGEN

The hydatid cyst fluid (HCF) was collected from fertile liver cysts obtained from one E. granulosus infected sheep in Izmir, Turkey. The fluid was clarified by centrifugation at 3,000 g for 30 min, and the supernatant was stored at –20°C until use as crude antigen. The optimal protein concentration was 10 µg/ml for in-house ELISA and 100 µg/gel for WB.

SERUM SAMPLES

A total of 121 serum samples were studied, aged 18–77 years (average 49.8). Serum samples were obtained from 37 surgically confirmed hepatic CE patients and 31 surgically confirmed pulmonary CE patients (without other organ involvement). All blood samples were drawn before the surgical intervention. Sera used to assess cross-reactivity were selected from six healthy individuals, seven patients with Hymenolepis nana infection, 20 patients with other proven pulmonary diseases (eight bronchopulmonary cancer, seven pulmonary tuberculosis, five chronic obstructive pulmonary disease) and 20 patients with other proven hepatic diseases (seven hepatocarcinoma, seven cirrhosis, six chronic hepatitis). All the sera were evaluated by comparison with a low molecular weight marker (Biorad 161-0305).

INDIRECT HAEMAGGLUTINATION (IHA)

The IHA assay for echinococcosis was performed according to the manufacturer’s instructions (Hydatidose, Fumouze Laboratoires, France). The IHA titers ≤ 160 were considered negative.

ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)

An ELISA test was performed as described previously (Coltorti, 1986). Microtiter plates with 96-flat bottom wells were used. Each well was sensitized for over night at + 4°C with 100 µl of 15 µg/ml HCF antigen diluted in phosphate-buffer (pH 7.4). After incubation, plates were washed three times with PBS containing 0.05 % Tween-20 (PBS-T). One hundred ml of the test or control sera diluted 1:100 in PBS-T were then placed in wells in duplicate. Next, the plates prepared were incubated in a moist chamber at 37°C for 60 min. They were then emptied and washed again three times with PBS-T. Then, each well was filled with 100 µl conjugate (anti-human IgG conjugated with alkaline phosphatase), diluted with PBS-T at the optimal concentration (1:10000). The plates were again incubated in a moist chamber at 37°C for 60 min, after which the wells were emptied and washed once more three times with 100 µl PBS-T. Following this, each well was filled with 100 µl of the substrate indicator reagent (pNPP, p-Nitrophenyl Phosphate) and incubated for exactly 15 min at room temperature. The readings were taken at 405 nm. The serum dilutions that resulted in an absorbance at three times the mean absorbance of wells containing negative control samples were considered as positive.

SODIUM DODECYL SULFATE-POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) AND WESTERN BLOTTING (WB)

The HCF was solubilized in sample buffer (10 % sodium dodecyl sulphate, glycerol, 1M Tris, 2 % bromphenol blue). Antigen, approximately 100 µg protein per gel, was separated by electrophoresis in a 10 % sodium dodecyl sulphate-polyacrylamide gels (SDS-PAGE) according to Wen & Craig (1994). Separated proteins were electrophoretically transferred onto nitrocellulose membrane. The membranes were blocked in Tris-buffered saline (TBS) (0.1 M Tris, 0.15 M NaCl) containing 3 % bovine serum albumin for overnight, washed three times with TBS containing 1 % Tween 20(TBS-T) and cut into strips. The strips were incubated with sera diluted 1:100 in TBS for 1 h at room temperature. After washing with TBS-T, the strips were incubated in a 1:5000 dilution of goat anti-human IgG alkaline phosphatase conjugate (Sigma A3187) in TBS and incubated for 1 h under the same conditions. After a new washing cycle, the specific antigenic bands were visualized by the addition of BCIP/NBT (Bromo-4-chloro-3-indolyl Phosphate/Nitro Blue Tetrazolium) alkaline phosphatase substrat (Sigma B-5655). The reaction was stopped with distilled water. The molecular sizes of the bands were evaluated by comparison with a low molecular weight marker (Biorad 161-0305).

STATISTICAL ANALYSIS

The molecular weight of each band seen in WB was calculated by Win Curve Fit computer program. The data obtained were evaluated by windows 13.0 SPSS program. ROC curve analysis was done for comparison of the bands. The Kruskal-Wallis test, Mann-Whitney U test and Discriminant analysis were used to determine
significant differences of molecular weights of the bands between pulmonary and hepatic hydatid cysts and control groups.

RESULTS

DIAGNOSTIC VALUE OF ELISA, IHA AND WB

The sensitivity and the specificity of the tests performed for evaluation of hepatic and pulmonary CE were shown in Table I. IgG serum antibodies reactive against echinococcosis were detected in two patients other than CE (one bronchopulmonary cancer and one cirrhosis) by ELISA, three patients (two bronchopulmonary cancers and one cirrhosis) by IHA and two patients (one bronchopulmonary cancer and one cirrhosis) by WB.

RESULTS OF WB

Figure 1 shows the immune response pattern of six hepatic and six pulmonary CE serum samples by WB. Sera from hepatic cases of CE reacted with 16 polypeptides of 6-116 kDa and also sera from pulmonary cases of CE reacted with 14 polypeptides of 4-130 kDa (mean, 9.6 versus 7.8 bands). WB analysis of pulmonary and hepatic CE sera indicated that some bands have high sensitivity and specificity. To calculate specificity of bands, all sera except study sera were taken as control group, including the other localization of hydatid cysts. The area under curve (AUC) values of some bands were determined using the ROC curves (Table II). The bands of 24 kDa and/or 32-34 kDa were detected in all hepatic CE patients. The bands of 100 kDa and/or 120-124 kDa appeared in all pulmonary CE patients except one. The 100 kDa and 120-124 kDa bands had 79.7 % and 73.3 % AUC values, respectively (p < 0.001).

According to the discriminant analysis of the bands, WB had 94.6 % sensitivity and 96.9 % specificity for hepatic CE and 90.3 % sensitivity and 96.9 % specificity for pulmonary CE. The two discriminant functions produced according to the molecular weights of the bands correctly classified 93.4 % of the cases (Fig. 2).

DISCUSSION

The intensity of the serologic response to hydatid antigens varies considerably depending on the host and location of parasitic cysts. Pulmonary cysts usually yield low serologic response, whereas the hepatic cysts are usually accompanied by a sustained serological response (Zarzosa et al., 1999). In this study, the sensitivities of all tests performed for patients with pulmonary CE are lower than that performed for patients with hepatic CE. The least sensitive test is IHA in both organ involvements. The sensitivity results obtained from IHA test are similar to those obtained by others (Gadea et al., 1999; Todorov et al., 2003). Although, ELISA was indicated as highly sensitive (100 %) in detecting anti-Echinococcus antibodies irrespective of the site of the cyst localization (Wattal et al., 1986), many authors reported ELISA not to be good enough to detect low antibody levels produced in pulmonary CE. Our ELISA results are similar to those obtained by Zarzosa et al. (1999).
In our WB, we could not get sensitivity or specificity results higher than 90% for single bands, despite the high sensitivity and specificity results obtained with antigen 5 or antigen B by others (Kanwar et al., 1992; Sbihi et al., 1997). The discrepancy may be attributed to the differences in using purified antigen or electrophoresis conditions. The sensitivity of the WB in our study is similar to that described by Li et al. (2004) who similarly used HCF as antigen in WB. But when whole larval extract is used in WB assay, higher sensitivity is observed (Liance et al., 2000). The sensitivity results in WB obtained from hepatic CE appears slightly higher than that of obtained from pulmonary CE. Although the most sensitive band in the WB of hepatic CE, according to the ROC curve analysis, is 52-54 kDa, it seems to have little importance, in differentiating pulmonary and hepatic CE. Similarly, despite the relatively high sensitivity of the other bands of intermediate molecular weight (24 kDa, 44-46 kDa) as has been observed by others (Kanwar et al., 1992; Doiz et al., 2001), these bands did not allow differentiation between hepatic and pulmonary CE. Although some authors showed relatively high sensitivity for the 10 to 12 kDa protein, the smallest subunit of the B antigen (Verastegui et al., 1992; Doiz et al., 2001), in our investigation, this band presented lower sensitivity for detection of CE cases. Our data showed that high molecular weight antigenic components are important in CE cases. According to the ROC curve analysis, the bands in the range of 100 kDa and 124 kDa can be candidates for differentiation of

<table>
<thead>
<tr>
<th>Classification results</th>
<th>116 kDa</th>
<th>52-54 kDa</th>
<th>32-34 kDa</th>
<th>24 kDa</th>
<th>10-12 kDa</th>
<th>6 kDa</th>
</tr>
</thead>
</table>

Fig. 1. – Some representative immunoblot results of hepatic and pulmonary CE.

<table>
<thead>
<tr>
<th>Predicted group Count (%)</th>
<th>Hepatic CE</th>
<th>Pulmonary CE</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original group Count (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic CE</td>
<td>35 (94.6)</td>
<td>1 (2.7)</td>
<td>1 (2.7)</td>
</tr>
<tr>
<td>Pulmonary CE</td>
<td>0 (0.0)</td>
<td>28 (90.3)</td>
<td>3 (9.7)</td>
</tr>
<tr>
<td>Control</td>
<td>2 (3.8)</td>
<td>1 (1.9)</td>
<td>50 (94.3)</td>
</tr>
</tbody>
</table>

* 94.4 % of original grouped cases correctly classified.

Fig. 2. – Classification results of the groups after discriminant analysis.
pulmonary CE from hepatic CE. The polypeptide of 100 kDa was recognized in WB assay by the 27 of 31 patients with pulmonary CE (87.1 %), but only by the 11 of 37 patients with hepatic CE (29.7 %). We also found a sensitivity of 70.9 % in 110 kDa band in pulmonary hydatidosis in contrast with 32.0 % in hepatic CE and a sensitivity of 83.9 % against 40.5 % in hepatic CE in 116 kDa. According to the ROC curve analysis, the band of 120-124 kDa is observed as the most important band for differentiation. There aren’t enough studies about high molecular masses in CE patients (Sbihi et al., 1997; Kanwar et al., 1992; Shamshesh et al., 1995). In a previous study, we frequently found a band of 124 kDa in patients with pulmonary CE (Akisu et al., 2005). Evidence for strain diversity based on morphological, biological and biochemical features of E. granulosus species has been principally confirmed by recent genetic studies (McManus, 2006). HCF also differs qualitatively and quantitatively depending on cyst location such as pulmonary cysts give poor quality antigens (Biava et al., 2001) and host origin such as HCF from human origin triggers a relatively stronger positive reaction due to higher protein concentration (Mamuti et al., 2002). Also, the sera of patients from different geographic foci might have different specials (McManus, 2006). Indeed, detection of the high molecular weight bands in pulmonary CE that is not reported by other studies might be attributed to sera of patients obtained from a different focus, Turkey.

In our study, discriminant analysis of WB bands for hepatic and pulmonary CE revealed 94.6 % and 90.3 % sensitivity, respectively. According to discriminant analysis, bands obtained by WB in patients with CE allow to detect the localization. Gadea et al. (1999) reported that when a discriminant analysis was applied by using the linear functions of the bands instead of analyzing the different bands separately, the sensitivity of WB was increased, without a notable loss of specificity. In that report WB coupled with a discriminant analysis showed 100 % sensitivity for hepatic CE but was unsuccessful for the diagnosis of infection in one patient with pulmonary CE. In our study, discriminant analysis of WB bands for both hepatic and pulmonary localization showed 96.9 % specificity. But, the occurrence of false positive results in patients with other parasitic infections like alveolar echinococcosis and fascioliasis should be studied for real assessment of WB specificity.

The present study intended to evaluate the usefulness of immunoblot analysis for diagnostic verification of human CE either located in liver or lung. It would be important to see high molecular weight bands in WB for confirmation of conventional serology in pulmonary CE cases, in addition to detection of antigen B and antigen 5 components.

REFERENCES

Dolz O., Benito R., Sbihi Y., Osuna A., Clavel A. & Gomez-Lus R. Western blot applied to the diagnosis and post-treatment monitoring of human hydatidosis. Diagnostic Microbiology and Infectious Disease, 2001, 41, 139-142.

Mamuti W., Yamasaki H., Sako Y., Nakaya K., Nakao M., Lightowler M.W. & Ito A. Usefulness of hydatid cyst fluid of Echinococcus granulosus developed in mice with secondary infection for serodiagnosis of cystic echinococcosis in humans. Clinical and Diagnostic Laboratory Immunology, 2002, 9, 573-576.

Reçu le 13 décembre 2005
Accepté le 5 juillet 2006