INTRODUCTION

Toxoplasma gondii is an obligate intracellular parasite with a global distribution and an extremely broad host range, including birds, mammals and humans. Only one species of this parasite has been identified, but there is marked variation in susceptibility, according to its host. Even within the mouse, different inbred strains have markedly different susceptibility to T. gondii infection. These susceptibility differences may be due to differences in the virulence of the parasite itself or differences in the genetic make-up of the mice in terms of their immune response (Johnson et al., 2002). The mortality of mouse strains varies widely depending on the parasite strain, size of inoculum, infection route, and gender of the mouse. Earlier studies considered mortality, cytokine production, and parasite burden after challenge infection of susceptible and
resistant strains of mice with the same or similar doses of *T. gondii* parasites (McLeod et al., 1989; Suzuki et al., 1995; Deckert-Schluter et al., 1995; Luo et al., 1997; Schluter et al., 1999). There have been no reports in which resistant and susceptible mice have been challenged with a physiologically normalized number of organisms. In order to alleviate the parasite dose dependent bias on the immune response in different genetic backgound, susceptible C57BL/7 mice and resistant CBA/J mice were infected by the oral route with a 50 % lethal dose (LD$_{50}$) as well as the same dose of parasites in each mouse strain for the particular strain. Following infection, we compared the parasite burden as well as the humoral and cell-mediated immune responses of these two strains of mice.

MATERIALS AND METHODS

MICE AND PARASITE STRAINS

Female inbred C57BL/6 and CBA/J mice were obtained from the Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea. All mice used were 8-10 weeks old and documented to be specific-pathogen-free animals. They were maintained under approved conditions in our college's animal research facilities. Two strains of *T. gondii* were used. The RH strain was used to prepare Toxoplasma lysate antigen (TLA), and the 76K strain was used to infect mice orally.

PARASITE CHALLENGE OF MICE

To determine the LD$_{50}$ per oral dose of the 76K strain of *T. gondii*, C57BL/6 mice were infected with four, 15, or 40 brain cysts per mouse, while CBA/J mice were infected with 100, 400, or 1,600 brain cysts. There were 20 mice in each group to study mortality, and checked four weeks daily. After determination of LD$_{50}$ of each mouse, mice were infected with LD$_{50}$ of parasites into C57BL/6 or CBA/J mice to compare the immune responses between two strains of mice. To compare the immune responses at the same doses of parasites, mice were also infected with LD$_{50}$ of C57BL/6 mice into CBA/J mice as well as LD$_{50}$ of CBA/J mice into C57BL/6 mice. Five mice were used in each value at all time point for evaluation of immune responses and parasite burdens at day 0, 3, 7, 14 and 28 post-infection (PI), respectively. Age- and sex-matched control mice of the same strains were treated with a similar dose of brain homogenate from uninfected mice.

TITRATION OF SERUM ANTIBODIES BY ELISA

We did preliminary experiments to set-up the adequate dilution in ELISA system, and then we determined the dilution factors of serum as 1:100. Each well of a 96-well plate was coated with TLA (10 μg/ml), and incubated overnight at 4°C. TLA was prepared according to the protocol outlined by Lee et al. (1999a). After blocking, serum samples were diluted 1:100 in 0.1 % BSA-PBS containing 0.05 % Tween 20 and added 100 μl per well. After two hours, HRP-conjugated goat anti-mouse IgG1, IgG2a, or IgM (Southern Biotechnology Associates Inc., USA) was applied. After washing, freshly prepared O-phenylenediamine dihydrochloride was added, and the reaction was stopped by the addition of 4N H$_2$SO$_4$. Optical density was read at 492 nm using an automatic ELISA reader (Spectra, Molecular Devices, USA).

Splenocyte Preparation and Phenotypic Analysis by Flow Cytometry

Spleens from mice were homogenized, and erythrocytes were lysed by Tris-NH$_4$Cl (pH 7.2). The splenocytes were washed in RPMI 1640 (Sigma, USA) containing 10 % heat-inactivated FBS, and antibiotics. Splenocyte containing 1 × 106 cells were incubated with either 50 μl of FITC-conjugated anti-mouse CD4, CD8α, and γδ monoclonal antibodies (1:100 dilution in 0.1 % BSA/PBS; PharMingen, USA) or isotype-specific control (PharMingen, USA) for 60 minutes at 4°C. Cells were washed three times in 0.1 % BSA/PBS by centrifugation, fixed with 1 % paraformaldehyde and then analyzed by flow cytometry (FACScan, Becton Dickinson, USA). The data were analyzed using the Cell-Quest program (Becton Dickinson).

Splenocyte In Vitro Proliferation Assay

Splenocytes were dispensed in 96-well culture plates at a concentration of 2 × 105 cells per well in RPMI 1640 containing 10 % FBS. Cells were cultured for 72 hours with or without TLA (15 μl /ml) at 37°C, 5 % CO$_2$. After incubation, the cells were pulsed with 0.5 μCi [3H]-thymidine (Amersham, Belgium) for 12 hr and harvested onto glass-fiber filters by an automatic cell harvester. [3H]-thymidine incorporation was assessed by a liquid scintillation counter, and the results were expressed as counts per minute (CPM). Data reported represent the mean ± standard deviation (SD) of triplicate cultures.

Cytokine mRNA Expression in Tissues Assessed by RT-PCR

Cytokine mRNA expression in brains and spleens of mice was assessed according to the method of Deckert-Schluter et al. (1995). Each tissue sample was processed for the isolation of total RNA using an RNAgent kit (Promega, USA). A preparation of cDNA was produced using a starting mixture containing 5 μg of total
RNA, 8 µl of 5 x RT buffer, 4 µl of dNTPs, 25 µM oligo-dT20 and 1 µl of AMV reverse transcriptase. The PCR was performed with 2-13 µl of cDNA reaction mixture containing 10 x polymerase buffer, 250 µM dNTPs, 0.4 µM of 5'- and 5'-primer, 2.5 U Taq polymerase at 94°C for one minute, 57°C for one minute and 72°C for one minute with Thermal cycler (TaKaRa PCR MP, Japan). The sequences of cytokine-specific primer pairs were as follows: hydroxyphosphoribosyltransferase (HPRT), 5'-GGAACTGCATCCGTTCATGAG and 5'-TCTTTGCTGGATACAGGCCAGACTTTGTTG-3'; IL-10, 3'-TGTCTAGGTCCT-CACTGCATCTTGG-3'; IFN-y, 3'-CTCATGGGAATGCTCCTTTCG-5' and 5'-ACGCTATCACACTGCATCTTGG-3'; IL-10, 3'-TGCTAGGTATCTTATGCTGGAGGTCCAGCGACTCTAA-5' and 5'-CCAGTTTTACCTGTTAGAAGTGATG-3'. After 35 cycling, the PCR products were separated by electrophoresis on 2 % agarose gels. Quantification of mRNA was performed with an imaging densitometer (Gel-Doc, BioRad, USA).

QUANTIFICATION OF TISSUE PARASITE BURDEN BY SOUTHERN BLOT

Southern blots for the quantification of tissue parasite burden were done according to the procedure described by Burg et al. (1989) and Khan et al. (1998). DNA was prepared from the brains and spleens by homogenization of 100 mg of tissue in 2 ml 0.1 M NaCl, 0.2 M sucrose, 0.01 M EDTA and 0.3 M Tris (pH 8.0). The solution was then incubated for two hours at 65°C after the addition of 10 % SDS and protease K (100 µg/ml). Potassium acetate (8 M) was then added followed by precipitation of the solution at 4°C for one hour and centrifugation at 5,000 x g for 10 minutes. The aqueous phase was extracted with phenol-chloroform and ethanol precipitated. Oligonucleotide primers used to initiate DNA amplification were complementary to segments of the B1 gene of *T. gondii* (5'-GGAATGCACTCGTCTGAG and 5'-TCAATTAAGGCTCTCTATGAG) and 5'-TCCTTAAAGGGTCATCGTGTC). DNA was amplified by PCR in a solution containing 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl₂, 50 mM KCl, 200 µM of each deoxynucleotide, and 0.4 µM of primers. A positive control (DNA directly extracted from tachyzoites of the RH strain) and a negative control (distilled water) were tested for each reaction. We applied the same volume of DNA already adjusted same optical density, so the applied volume of each lane was same in all experiments. The reaction was carried through 35 cycles, each consisting of 60 s at 94°C, 90 s at 55°C and 60 s at 72°C. After migration on a 2 % agarose gel, the PCR product was passively transferred onto a nylon membrane. The membrane was fixed for 15 minutes at 120°C. Blots were prehybridized at 42°C for three hours. For hybridization, a non-isotopic 5'-GGCGAACCAATCTGCGAATA-CCACC probe was used. For developing, it was labelled at the end with digoxigenin (Boehringer Mannheim, Germany). After rinsing, the membrane was hybridized with an anti-digoxigenin antibody labeled with alkaline phosphatase. After further rinsing, the membrane was developed with a chemiluminescent substrate CSPD (Disodium 3-(4-methoxyxypyrrol,2-dioxetane-3,2'-(5'-chloro)tricyclo [3.3.1.1^7]decan)-4-yl) phenyl phosphate; DIG Luminescence Detection Kit, Roche Molecular Biochemicals, Germany), and detected by exposure of X-ray film. Quantification of DNA was performed using an imaging densitometer.

STATISTICAL ANALYSIS

Statistical evaluations of differences in parasitic loads, antibody titers, proliferation assay, phenotype profiles and mRNA levels were determined by Mann-Whitney U test of nonparametric-independent method and Student's t test. Differences between the various groups were considered significant when p values were < 0.05.

RESULTS

ESTABLISHMENT OF THE LD50 FOR C57BL/6 (Susceptible) AND CBA/J (Resistant) MICE

To determine the LD₅₀ of *T. gondii* in C57BL/6 and CBA/J mice, groups of female C57BL/6 and CBA/J mice were challenged separately with three different doses of brain cysts. Four weeks after infection, the survival rate of C57BL/6 mice receiving four cysts was 85.0 ± 7.1 %, 47.5 ± 10.6 % in the group receiving 15 cysts per mouse, and 0.0 ± 0.0 % for those receiving 60 cysts. The survival rates of CBA/J mice after oral administration of 100, 400, and 1,600 cysts per mouse were 100 ± 0.0 %, 55.0 ± 14.1 %, and 5.0 ± 7.1 %, respectively. Therefore, we determined that the LD₅₀ of the 76 K strain of *T. gondii* was 15 cysts per susceptible C57BL/6 mouse and 400 cysts per resistant CBA/J mouse. In comparison with mortality at the same dose of parasites in each mouse strain, C57BL/6 mice had higher numbers of parasites in the spleen in comparison to LD₅₀- or 15 cysts-infected CBA/J mice. In contrast, all CBA/J mice receiving 15 cysts (LD₅₀ of C57BL/6 mice) survived.

PARASITE LOADS IN THE BRAIN AFTER INFECTION WERE HIGHER IN C57BL/6 MICE THAN IN CBA/J MICE

As shown in Figures 1A, 1B and 1C, the parasite load in the spleen of both mouse strains increased after infection to reach a maximum at day 7 PI, and decreased thereafter. At day 7 PI, LD₅₀-infected C57BL/6 mice had higher numbers of parasites in the spleen in comparison to LD₅₀- or 15 cysts-infected CBA/J mice (p = 0.0025 in LD₅₀-infected C57BL/6 vs
Fig. 1. - Levels of parasite DNA in tissues of C57BL/6 and CBA/J mice orally infected with the 76K strain of *T. gondii*. A, *T. gondii* DNA levels of positive control by Southern blot; B, Southern blot of *T. gondii* DNA levels of the spleens and brains from LD50-infected C57BL/6 and CBA/J mice. C, the kinetics of *T. gondii* DNA levels of the spleens and brains from C57BL/6 and CBA/J mice orally infected with the 76K strain of *T. gondii*. The data are expressed as mean ± standard deviation (SD) of one of two separate experiments (n = 5 for each value at all time point). The experiment was repeated two times with essentially similar results.

15 cysts-infected CBA/J, p = 0.999 in LD50-infected C57BL/6 vs LD50-infected CBA/J). The parasite burdens in the spleen of CBA/J mice receiving 15 cysts were not significant compared to LD50-infected CBA/J mice, except day 7 PI. The parasite burden in the brain of both mouse strains also increased after seven days after infection, and was subsequently maintained at a high level. The parasite burden in the brain was, however, markedly higher in LD50-infected C57BL/6 mice than in LD50- or 15 cysts-infected CBA/J mice at day 14 and 28 PI (0.0005 < p < 0.007). The parasite burdens in the brain of CBA/J mice receiving 15 cysts were lower than those of LD50-infected CBA/J mice at day 14 and 28 PI (p = 0.0544 at day 14 PI, p = 0.0155 at day 28 PI).

Differential Production of IgG Isotype Titers Between Resistant and Susceptible Mice

The IgG1 titer of *Toxoplasma*-infected C57BL/6 and CBA/J mice were similar to that of the uninfected control until day 7 PI. Thereafter, the IgG1 titers of LD50-infected C57BL/6 mice increased abruptly compared to CBA/J mice at the same time point. At days 14 and 28 PI, IgG1 titers of *T. gondii*-infected C57BL/6 mice were more than two times higher than those of the CBA/J mice (Fig. 2A). IgG2a titers of LD50-infected C57BL/6 mice were consistent with the uninfected control until day 7 PI and increased thereafter. In contrast, the IgG2a titers of LD50- or 15 cysts-infected CBA/J mice significantly increased after infection, and their titers were significantly higher than those of LD50-infected C57BL/6 mice through experiment period. The IgG2a titers of CBA/J mice receiving 15 cysts were lower in LD50-infected CBA/J mice at day 14 or 28 PI (p = 0.0009 at day 14 PI, p = 0.581 at day 28 PI) (Fig. 2B). The IgM titers of uninfected CBA/J mice were higher than those of uninfected C57BL/6 mice (p = 0.0005). The IgM titers of LD50-infected CBA/J mice increased significantly after day 3 PI and peaked at day 7-14 PI, whereas LD50-infected C57BL/6 mice significantly increased after day 7 PI. The IgM titers of CBA/J mice receiving 15 cysts were lower titers to LD50-
Fig. 2. – Time course of the IgG1 (A), IgG2a (B), and IgM (C) antibody titers of sera from C57BL/6 and CBA/J mice orally infected with the 76K strain of *T. gondii*. The data are expressed as mean ± SD of one of two separate experiments (*n* = 5 for each value at all time point). The experiment was repeated two times with essentially similar results.

![Graph A](image)

![Graph B](image)

![Graph C](image)

Fig. 3. – Proliferative responses of splenocytes from C57BL/6 and CBA/J mice orally infected with the 76K strain of *T. gondii*. Spleen cells were cultured in the presence of Toxoplasma lysate antigen for 72 h. The proliferation was assayed by [3H]-thymidine incorporation. Data are presented as the mean ± SD of one of two separate experiments (*n* = 5 for each value at all time point). The experiment was repeated two times with essentially similar results.

![Graph](image)

Infected CBA/J mice, but not significant differences except day 7 PI (p = 0.0072 at day 7 PI) (Fig. 2C).

Different patterns of in vitro proliferation of splenocytes from CBA/J and C57BL/6 mice

Thymidine incorporation by TLA-treated splenocytes from both mouse strains was significantly increased at day 0 and 3 PI as compared to the medium-treated control group. After day 7 PI, DNA synthesis was markedly depressed in TLA-treated splenocytes obtained from C57BL/6 mice, whereas DNA synthesis of CBA/J mice was not effected. Thymidine incorporation of CBA/J mice receiving 15 cysts was similar to that of LD₅₀-infected CBA/J mice through experiment (p = 0.7531) (Fig. 3).

CD8⁺ T cells are decreased in C57BL/6 mice, but not in CBA/J mice, after *T. gondii* infection

The percentage of CD4⁺ T cells from LD₅₀-infected C57BL/6 mice did not change significantly during the experiment as compared to uninfected C57BL/6 mice. The percentage of CD4⁺ T cells in LD₅₀-infected CBA/J mice was slightly increased at day 14 PI compared to day 0 (p = 0.422), and their pattern of CD4⁺ T cells was similar to CBA/J mice receiving 15 cysts (data were not shown). The percentage of CD8α⁺ T cells from LD₅₀-infected C57BL/6 mice was significantly decreased at day 14 PI compared to day 0 (p = 0.0002), whereas the percentage of CD8α⁺ T cells in LD₅₀ or 15 cysts-infected CBA/J mice was increased at day 14 PI (0.001 < p < 0.0016). The percentage of γδ T cells increased abruptly in both strains of mouse after day 3 PI as compared to uninfected controls (p < 0.0001). At day 7 or 14 PI, the percentage rise of γδ T cells in both strains of mouse was approximately three times higher than in uninfected mice, but the percentage of γδ T cells in LD₅₀-infected CBA/J mice was higher than in *Toxoplasma*-infected CBA/J mice receiving 15 cysts or LD₅₀-infected C57BL/6 mice at day 7 or 14 PI (0.0068 < p < 0.1026) (Fig. 4).
Fig. 4. - The kinetics of phenotypic changes of splenocytes from C57BL/6 and CBA/J mice orally infected with the 76K strain of T. gondii. Splenocytes were stained with FITC-conjugated anti-mouse CD8a, γδ TCR mAb, and then analyzed by FACScan. Data shown are the mean ± SD of one of two separate experiments (n = 5 for each value at all time point). The experiment was repeated two times with essentially similar results.

Differences in IFN-γ production between resistant and susceptible mice

The splenic and cerebral HPRT mRNA expression was almost equal during the experimental periods (data was not shown). In Figures 5A and 5B, IFN-γ or IL-10 mRNA expression in the spleen and brain of uninfected C57BL/6 mice was set as 1 at each time point of the experiment. The IFN-γ mRNA expression of spleen increased markedly in both strains after infection, and peaked at day 7 PI. IFN-γ expression in LD50-infected CBA/J mice was significantly higher than in LD50-infected C57BL/6 mice before infection, and at days 3 and 7 PI, although the mean increase ratio of IFN-γ after infection was higher in LD50-infected C57BL/6 mice at day 7 PI (1.0 vs 21.0 in LD50-infected C57BL/6 mice, 7.5 vs 28.0 in LD50-infected CBA/J mice). IFN-γ mRNA level in the spleen of CBA/J mice receiving 15 cysts was lower to that of LD50-infected CBA/J mice. IL-10 mRNA expression in spleen in both strains was similar to that in the uninfected control until day 3 PI. Thereafter, mRNA levels of this cytokine increased significantly in LD50-infected C57BL/6 mice, whereas only a slight increase was observed in LD50- or 15 cysts-infected CBA/J mice. IL-10 mRNA level in the spleen of CBA/J mice receiving 15 cysts

Fig. 5. - Cytokine mRNA levels in spleens (A) and brain (B) from C57BL/6 and CBA/J mice orally infected with the 76K strain of T. gondii. Data are expressed as relative increase in mRNA levels over the spleen or brain of uninfected C57BL/6 mice at each time point. IFN-γ or IL-10 mRNA expression in the brain and spleen of uninfected C57BL/6 mice was set as 1 at each time point of the experiment. Data shown are the mean ± SD of one of two separate experiments (n = 5 for each value at all time point). The experiment was repeated two times with essentially similar results.
were similar to that of LD$_{50}$-infected CBA/J mice (p = 0.9629).

The constitutive IFN-γ mRNA level in the brains of uninfected CBA/J mice was greater than C57BL/6 mice. IFN-γ mRNA expression in the brains of both strains was not significantly different as compared to uninfected controls until day 3 PI, thereafter a marked increase was observed. At days 14 and 28 PI, IFN-γ expression in the brain was higher in LD$_{50}$-infected C57BL/6 mice than in LD$_{50}$-infected CBA/J mice (0.0316 < p < 0.0019). IFN-γ mRNA level in the brain of CBA/J mice receiving 15 cysts was similar to that of LD$_{50}$-infected CBA/J mice (p = 0.8355). IL-10 mRNA expression in the brain in both strains was similar to that of uninfected control mice until day 7 and increased significantly in LD$_{50}$-infected C57BL/6 mice, but not in LD$_{50}$- or 15 cysts-infected CBA/J mice thereafter. IL-10 mRNA level in the brain of CBA/J mice receiving 1 cysts were similar to that of LD$_{50}$-infected CBA/J mice (p = 0.7053).

DISCUSSION

This study demonstrates that there is considerable difference in the mortality and immune response between resistant and susceptible mice following oral infection with T. gondii and these differences were variable according to dose of parasites. When mice were infected with an equivalent LD$_{50}$ of the 76K strain of T. gondii, that is 400 and 15 cysts separately, differences in the immune response were more apparent between resistant and susceptible strains of mice than those mice infected with same dose. This would suggest that an experimental mouse model using an equivalent lethal dose of parasites to compare the immune response is preferable to studies in which mice are infected with the same or similar dose of parasite.

LD$_{50}$ is widely used to compare the differences among groups in toxicology studies. We utilized the LD$_{50}$ in order to compare the fundamental differences between two genetically distinct mouse strains. Parasite loads may be related to local immunity or cytology. In this study, parasite loads of C57BL/6 and CBA/J mice after T. gondii infection were maximal at day 7 PI in the spleens and at day 14-28 PI in the brains. Compared with LD$_{50}$-infected C57BL/6 mice, both LD$_{50}$- or 15 cysts-infected CBA/J mice had fewer parasites in the spleen and brain. The patterns of parasite load in the brain and spleen of susceptible and resistant mice infected with T. gondii were similar to previously reported by Luo et al. (1997). However, there was no significant difference of parasite burden between LD$_{50}$- and 15 cysts-infected CBA/J mice. Toxoplasma-specific IgG2a antibody titers of CBA/J mice were significantly greater than those of C57BL/6 mice. Compared to 15 cysts-infected CBA/J mice, IgG2a titers of LD$_{50}$-infected CBA/J mice were increased. In contrast to IgG2a, IgG1 antibody titers at days 14 and 28 PI were higher in C57BL/6 mice than in CBA/J mice suggesting an enhanced Th1-type immune response in the susceptible strain (Nguyen et al., 1998). Toxoplasma-specific IgM antibody titers of CBA/J mice was higher and increased earlier than those of C57BL/6 mice. These results further support the importance of the IgM response in host protection against parasite infection (McLeod et al., 1989).

T cells respond to foreign antigens by proliferation and the synthesis of cytokines, protective immunity against T. gondii is dependent on a strong, cell-mediated, T cell-dependent immune response (Khan et al., 1994; Denkers, 1999; Lee et al., 1999a). In our study, T. gondii infection resulted in a temporary decrease in the percentage of CD8a$^+$ spleen cells in susceptible C57BL/6 mice, but not in resistant CBA/J mice. Since CD8$^+$ T cells are essential in the generation of protective immunity against toxoplasmosis (Khan et al., 1994), a decreased CD8a$^+$ T cells in Toxoplasma-infected C57BL/6 mice may allow for an increased number of Toxoplasma cysts compared with resistant mice (Brown & McLeod, 1990; Schluter et al., 1999). In contrast, the percentage of γδ T cells was markedly increased after infection in both strains of mice. In this study, we showed a more prominent change in the γδ T cell proportion in resistant CBA/J mice, especially in LD$_{50}$-infected CBA/J mice, than in LD$_{50}$-infected C57BL/6 or 15 cysts-infected CBA/J mice. This finding may be related to the role that γδ T cells play in the early host response to infection with T. gondii (Kasper et al., 1996; Lee et al., 1999b). Suppression of lymphocyte DNA synthesis has been demonstrated in some animal models of T. gondii infection and in some acutely infected individuals. A variety of factors, including IL-10, IFN-γ, nitric oxide and parasite factors, may in part be responsible for this down-regulatory event (Gandolfi et al., 1994 & 1995; Khan et al., 1995; Haque et al., 1995). In our study, splenocyte proliferation in response to TLA was markedly depressed in Toxoplasma-infected C57BL/6 mice from day 7 PI, but not in Toxoplasma-infected CBA/J mice. The profile of T cell cytokine synthesis plays an important role in regulating the immune response and determining relative resistance or susceptibility to T. gondii. In our study, IFN-γ mRNA expression was significantly increased in the spleen of both mouse strains immediately after T. gondii infection. These findings suggest that T. gondii infection in mice is predominantly a Th1-polarized response (Denkers, 1999). It is interesting that IFN-γ mRNA expression in spleen were higher in LD$_{50}$-infected CBA/J mice than in LD$_{50}$-infected C57BL/6 or...
15 cysts-infected CBA/J mice, whereas the increase ratio of IFN-γ mRNA expression after infection was higher in C57BL/6 mice. This would suggest that IFN-γ plays a major role in murine resistance to T. gondii infection (Scharton-Kersten et al., 1996) and that over-production of type I cytokines, in particular IFN-γ, may lead to immune hyperreactivity in susceptible hosts (Denkers, 1999; Mordue et al., 2001; Mennechet et al., 2002). Therefore, susceptible C57BL/6 mice may induce more immunopathology than resistant CBA/J mice. Also, the increase of IL-10 mRNA expression was particularly pronounced in the spleens of Toxoplasma-infected C57BL/6 mice as compared to Toxoplasma-infected CBA/J mice. This increase indicated that IL-10 plays a major role in protecting the host against an excessive Th1 cytokine response (Suzuki et al., 2000), and the progression of toxoplasmic encephalitis in susceptible mice might be the result of elevated levels of IL-10 in the infected brains of susceptible, but not resistant, mice (Hunter et al., 1994; Khan et al., 1995). Together these observations suggest that LD₅₀-infection of C57BL/6 and CBA/J mice may provide a more definitive measure of immune outcome than mice receiving the same dose. This potential difference should be taken into account when studies are planned to evaluate immune parameters between two or more different strains of inbred mice.

ACKNOWLEDGEMENTS

This work was supported by Grant No. 1999-12020-002-2 from the Basic Research Program of the Korea Science & Engineering Foundation and National Institutes of Health AI 19613 and 30000.

REFERENCES

Schlüter D., Deckert-Schluter M., Lorenz E., Meyer T., Rollinger M. & Bogdan C. Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in *Toxoplasma gondii*-susceptible C57BL/6 mice but does not reactivate the latent disease in *T. gondii*-resistant BALB/c mice. *Journal of Immunology*, 1999, 162, 3512-3518.

Suzuki Y., Sher A., Yap G., Park D., Neyer L.E., Lievens U., Fort M., Kang H. & Gufwoli E. IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with *Toxoplasma gondii*. *Journal of Immunology*, 2000, 164, 5375-5382.

Reçu le 29 juin 2001
Accepté le 2 octobre 2003