
SKORACKI M.*, TRYJANOWSKI P.** & HROMADA M.***

Summary:
Two new species of syringophilid mites (Acari: Syringophilidae) are described from quills of true shrikes (Passeriformes: Laniidae): Syringophilopsis kristini sp. n. from Lesser Grey Shrike, Lanius minor, from Slovakia, and Syringophilopsis yosefi sp. n. from Lanius sp. from Cameroun.

KEY WORDS: Acari, quill mite, ectoparasites, taxonomy, Syringophilopsis, Lanius.

INTRODUCTION
Syringophilid mites are obligatory parasites that live and reproduce in the quills of flight and body feathers of many bird species. They feed on the tissue fluids of birds by piercing the quill wall with their styletiform chelicerae (Kethley, 1971; Casto, 1974). Therefore, quill mites can be expected to be parasites that substantially affect birds' condition and fitness.

To date, the genus Syringophilopsis Kethley, 1970 includes 15 described species from two orders of avian host: Passeriformes (Sylviidae, Icteridae, Fringillidae, Ploceidae, Hirundinidae, Turdidae, Sturnidae, Trogloptyidae, Motacillidae, Emberizidae) and Coraciiformes (Meropidae) (Fain et al., 2000; Bochkov et al., 1999; Skoracki & Dabert, 2000). In this paper we give a description of new species of syringophilids associated with passeriform birds of the family Laniidae.

The terminology for morphology and leg chaetotaxy follows that of Kethley (1970). The nomenclature of Fain (1979) is used for idiosomal chaetotaxy and the nomenclature in the version adapted for the family Syringophilidae (Bochkov & Mironov, 1998; Bochkov et al., 1999). All measurements, including scale bars in figures, are given in micrometres (μm). The setal measurements of holotypes are incomplete because some setae are broken.

Abbreviations for locations where the type materials are deposited:
UAM – Department of Animal Morphology, A. Mickiewicz University, Poznań, Poland.
SMB – Department of Natural History, the Šarišské Museum, Bardejov, Slovakia.
ZIN – Zoological Institute, St. Petersburg, Russia.

DESCRIPTIONS

Syringophilopsis kristini sp. n.
(Figs 1-4 and 7-11)

• Female (Figs 1, 2 and 7-9)
Total body length 1,015 in holotype (1,020-1,050 in paratypes).
Gnathosoma. Hypostomal apex (Figs 7, 8) with a pair of median protuberances. Peritremes M-shaped (Fig. 9), each branch with 14-18 chambers. Stylophore 245 (245-250) long, slightly constricted posteriorly.
Idiosoma. Cuticular striations as in figures 1 and 2. Pro-podosomal plate well sclerotized, cleft on anterior and lateral margins. Setae vi, ve, sci, and d1 set on the plate, setae sce on or near the plate. Length of setae: vi (100-125); ve (210 (215-220); sci 345 (290-345); b (320-360); sce 400 (360-400); d1 395 (360-420). Small sclerotized plates near setae d2 present or absent.
Setae d_2 closer to l_2 than to l_1. Distance between setal bases l_1-d_2 and d_2-l_2: (95-135) and (70-100) respectively. Length of setae: l_1 375 (330-370); d_2 (370-425); l_2 (410-420). Pygidial plate present, bearing setae l_4, l_5, d_4 and d_5. Length of setae: l_5 440 (445-455); d_5 375 (365-420); l_4 440 (430-470); d_4 (400-465); i_1 (200-240); i_3 120 (170); g_1 (70-80); g_2 (80-125); a_1 50 (40-50); a_2 55 (40-55); p_g_1 (270-315); p_g_2 (265-330); p_g_3 (275-305).

Legs. All coxae punctate. Length of setae: sc_1 30 (25-30); sc_2 (35); sc_3 80 (60-75); sc_4 (65-75). Setae p' and p'' of legs III and IV with 11-13 tines. Length of setae: t_c' of tarsi III and IV (75-90); t_c'' of tarsi III and IV (95-105).

• Male (Figs 3, 4 and 10, 11)
Total body length 755-770.

Gnathosoma. Hypostomal apex as in figure 10. Peritremes M-shaped (Fig. 11), each branch with 17-19 chambers. Stylophore 215-220 long, constricted posteriorly.

Idiosoma. Cuticular striations as in figures 3 and 4. Propodosomal plate with slightly concave margins, not punctated. Setae vi, ve, sci, and d_1 set on the plate; setae sce set on or near the plate. Length of setae: vi 55-65; ve 110-115; sci 215-240; b 230; sce 255; d_1 280. Hystersomal and pygidial plate fused, bearing setae d_2, l_2, d_5 and l_5 (Fig. 3).

Setae d_2 closer to l_2 than to l_1. Distance between setal bases l_1-d_2 and d_2-l_2: 70 and 40 respectively. Length ratio d_2-l_2: 1:1,7; l_2 70-85; d_2 40-55; l_1 40-50; d_5 65-80; l_5 295; p_g_1 150-165; p_g_2 150; i_1 140-155; i_3 95-115.

Legs. Coxae III and IV slightly punctate or without punctations. Length of setae: sc_1 25-30; sc_2 30; sc_3 60; sc_4 55. Setae p' and p'' of legs III and IV with 8-9 tines. Length of setae t_c' of tarsi III and IV 55-70; t_c'' of tarsi III and IV 70.

• Type material
Female holotype (S-10.2.1), six females, three males and 15 nymph paratypes from secondaries feathers.
from *Lanius minor* Gmell., 1788 (Passeriformes: Laniidae); Slovakia, Kurov, 06 June 1960, leg. T. Weisz. Holotype, three females, two males and 13 nymph paratypes are deposited at UAM; one female and two nymph paratypes are deposited at SMB; two female and one male paratypes are deposited at ZIN. The specimen of type host is deposited at SMB (154/60).

- **Etymology**

This species is named in honour of the distinguished Slovak ornithologist and ecologist Dr. Anton Kristin (Institute of Forest Ecology SAS, Zvolen, Slovakia), who strongly contributed to knowledge of *Lanius minor* ecology and conservation.

- **Differential diagnosis**

Syringophilopsis kristini sp. n. is closely related to *S. borini* Bochkov & Mironov, 1999 described from *Sylvia borin* (Passeriformes: Sylviidae) from Novgorod Prov., Russia. In both species, the hypostomal apex has a pair of small protuberances; length ratio of setae *vi* and *ve* 1: 2; setae *d2* closer to *l2* than to *l1*; all coxae punctate, setae *p'* and *p''* of legs III and IV with 12-16 tines (in females); setae *d5* four times shorter than *l5*; three pairs of paragenital setae present (in males). This new species is distinguishable from *S. borini* by the presence of following characters: In the female *S. kristini* sp.n. length of setae: *pg1* 270-315; *pg2* 265-330; *pg3* 275-305; setae *g2* 2.5-3.5 times shorter than *pg3*; each branch of peritremes with 14-18 chambers; pygidial plate present. In the male length of setae: *vi* and *ve* 100-125 and 210-220 respectively (length ratio 1:2); length of setae: *l1* and *d2* 70-85 and 40-55 respectively (length ratio 1:1.5-1.8); length of setae: *pg1* 150-165; *pg2* 150; hysterosomal plate present. In the female *S. borini* length of setae: *pg1*, *pg2* and *pg3* 145-180; 145-157 and 180-198 respectively; setae *g2* and *pg3* subequal; each branch of peritremes with 13 chambers; pygidial plate absent. In the male length of setae: *vi* and *ve* 49-54 and 67-72 respectively (length ratio 1:1,3-1,4); length of setae: *l1* and *d2* 39-49 and...
SKORACKI M., TRYJANOWSKI P. & HROMADA M.

39-45 respectively (length ratio 1:1); length of setae: \(pg1 \) 58-67; \(pg2 \) 63-70; hysterosomal plate absent.

Syringophilopsis yosefi sp. n.
(Figs 5, 6 and 12, 13)

- Female (Figs 5, 6 and 12, 13)
 Total body length 1,265 in holotype (1,305 in para-type).
 Gnathosoma. Hypostomal apex (Fig. 12) ornamented with two pairs of median protuberances. Peritremes M-shaped (Fig. 13), each transverse branch with three-six chambers, each longitudinal branch with 10-13 chambers. Stylophore 280 (280) long, constricted posteriorly.

Idiosoma. Cuticular striations as in figures 5 and 6. Propodosomal plate well sclerotized, punctate and with concave lateral and posterior margins. Setae \(vi, ve, sci, sce \) and \(d1 \) set on the plate. Length of setae: \(vi \) 60 (50-60); \(ve \) (130-165); \(sci \) (430-475); \(b \) 527 (530-555); \(sce \) 550; \(d1 \) (525-550). Pair of small sclerotized plates near bases of setae \(d2 \) present.

Setae \(d2 \) closer to \(l2 \) than to \(l1 \). Distance between setal bases \(l1-d2 \) and \(d2-l2 \): (130-150) and 105-120 respectively. Length ratio \(d2-l2:l1-d2 \) 1:1,2-1,3. Length of setae: \(l1 \) 550 (570); \(d2 \) 475; \(l2 \) (520-535). Pygidial plate

Figs 5, 6. - *Syringophilopsis yosefi* sp. n. Female. 5. Dorsal view. 6. Ventral view.
TWO NEW SPECIES OF THE GENUS SYRINGOPHILOPSIS

present, punctate, bearing setae l4, l5, d4 and d5. Length of setae: l5 635 (570); d5 100 (110-135); l4 665 (620-700); d4 (100-120); ic1 (290); ic3 (220-235); gl 85 (80-120); g2 90 (90-100); a1 40 (40-45); pg1 300 (290-360); pg2 100 (75-100); pg3 410 (400-425).

Legs. All coxae without punctations. Length of setae: sc1 25 (25); sc2 25; sc3 75 (90); sc4 70. Setae p' and p'' of legs III and IV with 10-13 tines. Length of setae: tc' and tc'' of tarsi III and IV (100).

- Male: unknown.

- Type material
Female holotype and 11 paratype females from Lanius sp. (Passeriformes: Laniidae); Cameroun, Yagoua, 03 August 1971, leg. F. Puylaert (141.265). Holotype and nine paratype females are deposited at MRAC; two paratype females, are deposited at UAM.

- Etymology
This species is named in honour of Dr. Reuven Yosef (IBRC Eilat, Ben-Gurion University of the Negev, Israel), a prominent Israel' ornithologist and conservationist, author of basic studies on shrike ecology and promotor of new directions in shrike research, as well as our friend.

- Differential diagnosis
Syringophilopsis yosefii sp. n. is closely related to S. turdus (Fritsch, 1958) from Turdus pilaris (Turdidae) from Germany. In females of both species, body length longer than 1,000, the hypostomal apex with two pairs of median protuberances; length ratio of setae pg2 and pg1 1:3.5-4; the pygidial plate present, setae sc1 longer than 400, genital setae longer than 80. This new species is distinguishable from S. turdus by the presence of following characters: In the female S. yosefii sp. n. length of setae vi 50-55; propodosomal plate punctate and not cleft on anterior margin; setae sce and d1 set on the plate and located in the same line; pygidial plate well sclerotized and punctate. In the female S. turdus (10 specimens from the type host from Poland) length of setae vi 120-140; propodosomal plate not punctate and cleft on anterior margin; setae II not set on the plate, setae d1 and l1 not located in the same line; pygidial plate weakly sclerotized and without punctations.

Parasite, 2002, 9, 11-16

Mémoire
DISCUSSION

True shrikes of the family Laniidae are predominantly birds of semiopen habitats, frequently intensively farmed landscapes (Lefranc & Worfolk, 1997). Most shrike species are in decline on a worldwide basis (Yosef, 1994). As part of understanding this decline there is an urgent need to include also parasitic species in ecological and environmental studies. It is practically impossible to examine any organism in detail without acquiring at least basic knowledge on its parasitofauna (Widsor, 1995).

However, the information about shrike parasites is very poor, consisting mainly of records of parasite occurrence and taxonomic works. There is an acute lack of studies focused toward ecology (Harris & Franklin, 2000; Hromada et al., 2001). To date, only one shrike syringophilid mite is described – Syringophiloidus weizzi Skoracki, Hromada & Tryjanowski, 2001 from the Great Grey Shrike, Lanius excubitor (Skoracki et al., 2001).

Quill mites, as obligatory parasites of very specialized life cycle, typically exhibit low infection prevalences in non social, separately breeding hosts such as shrikes. This is likely due to the limited opportunity for mites to colonize new hosts. Practically all true shrikes of the family Laniidae breed in separate pairs; outside of the breeding season, they are solitary and defend extensive territories. Thus, without another possibility of quill mite dispersal than from parents to juveniles, there are very limited chances of colonizing of new host individuals.

ACKNOWLEDGEMENTS

We are grateful for the help and enabling of our study to Dr. T. Jászay, Šarišské Múzeum Bardejov, Slovakia. We also grateful to Dr. Andre V. Bochkov, Zoological Institute, St. Petersburg, Russia, and Dr. Ziemowit Olszanowski, Department of Animal Taxonomy and Ecology, A. Mickiewicz University, Poland, for their critical reading of the manuscript.

REFERENCES

