INTRODUCTION

The leishmaniasis parasites are obligatory intracellular protozoans which cause human cutaneous (CL), mucocutaneous (MCL) and visceral leishmaniasis (VL). The distribution of the disease is widespread in intertropical area with high degree in North Africa, Europe and Asia where they constitute an important public health problem (Ashford et al., 1992; Neoumine, 1996). Visceral leishmaniasis is a zoonosis and an anthropozoon with worldwide distribution. Canine visceral leishmaniasis caused by *Leishmania infantum* is endemic throughout the Mediterranean basin. Since Nicolle & Comte (1908) first discovered canine leishmaniasis, parasites have been isolated from dogs in most of the countries around the Mediterranean sea, where the prevalence of infection has fluctuated since the second world war (Bettini & Gradoni, 1986), and dogs are important reservoir hosts of *L. infantum*. In Morocco, the first case of human visceral leishmaniasis (Kala-azar) was recognized by Klippel & Monier-Vinard (1922). Natural canine leishmaniasis was first reported by Jeawme (1932). Since this first discovery, there has been no evaluation of the extent of visceral leishmaniasis and very limited information on the epidemiology of the disease has been available. Research on canine leishmaniasis has been widely neglected although it is generally understood that dogs serve as a constant source of infection for the vectors, phlebotomine insects (Kirsm et al., 1987).

In this decade, an increasing number of human visceral leishmaniasis has been observed in Morocco: 216 cases going from 1957 to 1989 against 138 in five years going from 1990 to 1994. This infection reached zones which have been until now unhurt and other zones where only cutaneous leishmaniasis was detected (Maaroufi et al., 1995). Indeed, to consider the real importance of dog’s infection, a seroprevalence study was carried out in northern Morocco in five provinces: Zouagha My Yacoub, Taounate, Al Hoceima, Chefchaouen and Ouezzane.
Fig. 1 - Results of canine leishmaniasis in five provinces in northern Morocco.
MATERIALS AND METHODS

GEOGRAPHICAL AREA

The study was carried out in five provinces in northern Morocco (Rif region): Zouagha My Yacoub, Taounate, Al Hoceima, Chefchaouen and Ouezzane.

It is a mountainous region with variable relief and, therefore, is common to find a wide range of vegetation and bioclimatic variation. Our study concerned 55 localities (Fig. 1) where the altitude vary from 0 m to 1,500 m and in which two bioclimatic zones appear: the semi-aride zone comprises altitudes between 300-600 m with moderate winter and precipitations between 400-800 mm (throughout Zouagha Moulay Yacoub to Taounate), and 900-1,000 mm in Taounate. The sub-humide zone include two substages: moderate (Taounate) and fresh (Ketama: province of Al Hoceima) with precipitations between 1,000-1,400 mm per year (Targhist 450 mm) and reach 330 mm at Al Hoceima in the sea level (Fig. 1).

The vegetation was also variable with cork oak, thuya and holm oak.

SAMPLING

Between January and November 1995, with assistance of local, civil and health authorities, gatherings of dogs were requested in provinces of Taounate, Al Hoceima, Zouagha My Yacoub, Chefchaouen and Ouezzane.

Kept dogs per province and positive dogs were presented in Table II. After muzzling dogs, blood was extracted from the jugular vein and serum was separated then stored in a — 20 °C freezer for IFAT testing.

Parasite, 1998, 5, 325-330

PCR AND ISOENZYME CHARACTERIZATION

We used PCR for the detection and identification (PCR-RFLP) of Leishmania parasites using primers from the small sub-unit ribosomal gene (Van Eys et al., 1992). Briefly, DNA of parasites was extracted out of the lysed samples (lymphatic node puncture) with phenol/chloroform and ethanol precipitated (Sambrook et al., 1989). The amplified product of 650 basepair was digested with 10 units Rsal, for PCR-RFLP, and 20 µl of samples were visualized by 2 % agarose gel electrophoresis.

The isolated strains were characterized by isoenzyme electrophoresis in starch gel according to Moreno et al. (1986) using a panel of 15 enzymes: MDH, ME, G6PD, 6PGD, ICD, NP1 and NP2, PGM, DIA, GOT1 and GOT2, MPI, GPI, FH, GLUD. In each case (PCR-RFLP) and isoenzyme characterization), results were compared to WHO reference strains of L. infantum (MHOM/TN/80/IPT-1), L. tropica (MHOM/SU/74/K27), and L. major (MHOM/SU/73/5ASKH).

RESULTS

A total of 1,013 canine sera were collected in our investigation. They were screened by IFAT test and sera with titers ≥ 100 were considered positive according to Rioux et al., 1986 and Davoust et al., 1994. Dogs with titer 50 were considered doubtful and will be followed serologically.

Among examined sera, 87 out of 1,013 were positive with antibody titers between 100 and 12,800 and were distributed in two groups:

- 83 asymptomatics (without any clinical symptoms),
- four dogs with one or several symptoms of leishmaniasis.

876 sera were negative, 26 out of 876 were symptomatics (parasitic infections with similar symptoms to those of canine leishmaniasis) and 50 were doubtful with titer 50 (Table I). This serology showed variation between areas (Table II) which were 7.8, 14.7, 13.2, 5 and 2.2 % respectively in Taounate, Al Hoceima, Zouagha Moulay Yacoub, Chefchaouen and Ouezzane. Inside each province, important differences in serology were noted: 0 to 32 % in Zouagha My Yacoub, 0 to 24 % in Taounate, 0 to 28 % in Al Hoceima and 0 to 33,33 % in Chefchaouen.

IFAT

The immunofluorescence assay (IFAT) was carried out as described by Pinelli et al. (1994) using as antigen promastigotes of Leishmania infantum (MHOM/TN/80/IPT-1) MON-1. Dog’s sera were tested at a series of 2-fold dilutions from 1/50 to 1/12,800, and titers ≥ 100 were considered positive. Detection of anti-Leishmania antibodies in canine sera was assayed using an FITC-conjugated anti-dog IgG.
Table I. - Comparison of clinical evaluation with titers of canine sera.

<table>
<thead>
<tr>
<th>Clinical evaluation</th>
<th>&lt; 50</th>
<th>50</th>
<th>≥ 100</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without symptoms</td>
<td>850</td>
<td>48</td>
<td>83</td>
<td>981</td>
</tr>
<tr>
<td>With symptoms</td>
<td>26</td>
<td>2</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>876</td>
<td>50</td>
<td>87</td>
<td>1,013</td>
</tr>
</tbody>
</table>

Table I. - Comparison of clinical evaluation with titers of canine sera.

Table II. - Results of canine leishmaniasis in the five provinces.

<table>
<thead>
<tr>
<th>Province</th>
<th>Kept dogs</th>
<th>Positive dogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taounate</td>
<td>488</td>
<td>38 (7.8 %)</td>
</tr>
<tr>
<td>Al Hoceima</td>
<td>170</td>
<td>25 (14.7 %)</td>
</tr>
<tr>
<td>Zouagha Moulay Yacoub</td>
<td>91</td>
<td>12 (13.2 %)</td>
</tr>
<tr>
<td>Chefchaouen</td>
<td>218</td>
<td>11 (5 %)</td>
</tr>
<tr>
<td>Ouezzane</td>
<td>46</td>
<td>1 (2.2 %)</td>
</tr>
</tbody>
</table>

Indeed, in the locality of Brarcha (Fig. 1) where 32 % of dogs were seropositive, two cases of human leishmaniasis were reported in 1995. The same were observed in other localities as Issouikene, Bab Ouender and Allal (Fig. 1). Furthermore, there are some districts where neither human leishmaniasis nor positive dogs were reported. Seroprevalence of canine leishmaniasis was relatively elevated in high (≥ 1,000 m) and middle altitude (500 m < altitude < 1,000 m) than in low altitude (≤ 500 m) and nivel = 0 (Table III).

Among ten dogs ponctionated, seven dogs were positive by PCR, six strains of *Leishmania* were isolated by culture method, of which one was positive through direct examination. Rsal digestion of the amplified product of the seven samples gave profile similar to *L. infantum*.

The six isolates (MCAN/MAR/95/IPM96, MCAN/MAR/95/IPM1285, MCAN/MAR/95/IPM263, MCAN/MAR/95/IPM77, MCAN/MAR/95/IPMG1, MCAN/MAR/95/IPMBR33) were identified as *L. infantum* MON-1 by isoenzyme analysis.

Table III. - Variation of seroprevalence with altitude.

<table>
<thead>
<tr>
<th>Nivel = 0/m</th>
<th>Altitude ≤ 500 m</th>
<th>Altitude &lt; 1,000 m</th>
<th>Altitude ≥ 1,000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dogs/⁺</td>
<td>Total dogs/⁺</td>
<td>Total dogs/⁺</td>
<td>Total dogs/⁺</td>
</tr>
<tr>
<td>125/8</td>
<td>502/40</td>
<td>229/24</td>
<td>157/15</td>
</tr>
<tr>
<td>(6 %)</td>
<td>(8 %)</td>
<td>(10.5 %)</td>
<td>(9.5 %)</td>
</tr>
</tbody>
</table>

* : Positive.

This study has also demonstrated that a small number of dogs was sufficient for transmission of the disease, contrary to other studies which postulated that the transmission is significant for infecting phlebotomines if animal’s proportion was considerably high (> 20 %) (Chable-Santos *et al.*, 1995). This is the case of two localities: Sidi Bouchta and El Mouzarhar where one reported positive among seven dogs and two cases of human visceral leishmaniasis were enregisted in 1995. In some areas, it appears that infected dogs have an impact on the epidemiology of human leishmaniasis. Evidence for this is provided by a coincidence of elevated porcentage of canine leishmaniasis with cases of human leishmaniasis in localities as Issouikene, Boudouait, Ouled taleb and Brarcha where four human visceral leishmaniasis were enregisted in 1994. The same thing was observed in Pakistan where a study has demonstrated a relation between canine disease and human visceral leishmaniasis (*Rab et al.*, 1995). In addition, seroprevalence of canine leishmaniasis was relatively elevated in high (≥ 1,000 m) (9.5 %) and
middle altitude (500 m < altitude < 1,000 m) (10.5 %) than in low altitude (≤ 500 m) (8%) and nivel = 0 (6 %) (Table III).

Using a combination of molecular method (PCR-RFLP) and isoenzyme electrophoresis, six isolates were identified (four from symptomatic dogs and two from asymptomatic dogs) as *L. infantum* MON-1 from liquide of lymphatic nodes punctures of infected dogs. Our results confirm those of other studies, which previously reported the existence of the species *L. infantum* MON-1 in the mediterranean basin (Bettini & Gradoni, 1986). The same species is responsible of human visceral leishmaniasis in Morocco (Guessous-Idrissi et al., 1997 & Maaroufi et al., 1995) and the reservoir hosts are dogs. In view of this results, a control strategy seems necessary for fighting against the reservoir of visceral leishmaniasis in regions of Al Hoceima and Zouagha Moulay Yacoub where the incidence of the disease is relatively high. The more effective and feasible strategy for this is the prevention of the disease in dogs in order to interrupt the domestic cycle of zoonotic visceral leishmaniasis by developing a vaccine that protect dogs from developing parasitemia or cutaneous infection, and from becoming reservoir hosts for the parasite, but since the vaccine does not exist, the only reasonable strategy is identifying and killing infected dogs as it was proposed by Tesh, 1995.

**Acknowledgements**

The conception and realization of this work were carried out with the collaboration of a team managed by Professor J.A. Rioux of Montpellier, France and Dr. J. Mahjour, Dr. A. Laammani-Idrissi, B. Mouki and A. Seddiki from the Moroccan Ministry of Health. We express our sincere thanks to the health authorities of the five provinces: the Doctors, Veterinaries, Nurses and civil authorities for their help in the field survey and the direction of statistics: division of sounding methods and cartography for their assistance in the map working out.

**References**


Leishmaniose viscérale infantile au Maroc (à propos de 138 cas diagnostiqués à l'hôpital d'enfants de Rabat entre 1990 et 1994). Biologie Infectiologie, 1995, 1, 2, 50-54.


Reçu le 6 octobre 1997
Accepté le 17 septembre 1998