Summary:
Schellackia calotesi n. sp. is described from the Thai agamids Calotes mystaceus and C. versicolor. Schellackia-type sporozoites were recovered from blood and liver of one C. versicolor from Kon Kaen North-East Thailand and two C. mystaceus from Chiang Mai, North Thailand. Specimens of both species were fed on sporozoite infected blood, of these only one C. mystaceus developed endogenous infection in the anterior intestine. Description, from histological material includes early and dividing meronts, micro and macrogamonts and non sporulated oocysts.

KEY-WORDS: Schellackia calotesi, meronts, microgamonts, macrogamonts, oocysts, sporozoites, gut, liver, blood, Calotes mystaceus, Calotes versicolor, Thailand.

INTRODUCTION
The genus Schellackia comprises nine heterogeneous species of eimerian coccidia, parasites of either saurian reptiles or anurans transmitted by hematophagous Acarina or insects (Klein et al., 1988; Bristovetzki & Paperna, 1990). The few known species have nonetheless been reported so far from all continents except Australia. The presently described new species is from a Thai agamid lizard.

MATERIALS AND METHODS
Three Calotes versicolor and one C. mystaceus were captured in Thailand near Kon Kaen (Northeastern region) and 12 C. versicolor and 34 C. mystaceus from Chiang Mai (Northern region) (12 and 34, respectively). Films were prepared from blood obtained by clipping the tip of the lizard’s tail. Smears were prepared from the gut and liver. Prepared films and smears were air-dried fixed in absolute methanol and stained in Giemsa (1/10 diluted in phosphate buffer pH 7.4) for one hour. Two apparently uninfected specimens of each species were fed on blood and liver of a sacrificed infected C. versicolor from Kon Kaen and sacrificed after 12 days. The gut and the liver were fixed in neutral buffered Formalin for histology. Fixed tissue, after dehydration in graded ethanols, was embedded in glycol-methacrylate medium (GMA of Agar Comp., UK). Sections, 3-4 μm were cut with a glass knife in a Sorval J164 microtome and stained with Meyer’s haemalum-eosin (MH-E). Descriptions of all developmental stages were made from histological sections and refer to cross sections. All measurements in micrometers (μm).

RESULTS
Of all examined lizards sporozoites were recovered only in one C. versicolor from Kon Kaen, and in two C. mystaceus from Chiang Mai. In the first, sacrificed for histology, sporozoites occurred in the liver as well as in the blood, but no stages were found in the intestine. Of the two C. mystaceus and two C. versicolor fed on infected blood and liver, only one specimen of the first species developed an endogenous infection.

* Department of Animal Sciences, Faculty of Agriculture of the Hebrew University of Jerusalem, Rehovot 76100, Israel.
Correspondence: Ilan Paperna. Fax: 972 8 465763.
E-mail: Paperna@agri.huji.ac.il
Schellackia calotesi n. sp.

Type host: *Calotes mystaceus.*

Locality: Chiang Mai, Thailand.

Other hosts and occurrence: Sporozoites were traced in the blood of two *C. mystaceus* from Chiang Mai and one *C. versicolor* from Kon Kaen, Thailand.

DESCRIPTION

Endogenous stages (Fig. 1) occurred in the mucosal epithelial layer of the anterior gut (Figs. 2-6). All stages except mature oocysts were lodged in an expanded parasitophorous vacuole (PV). Although most infected cells hosted one parasite, a few however contained two (Figs. 2, 4) or even three macrogamonts or both macrogamonts and microgamonts. Meronts had a dense cytoplasm with very few, or no inclusions or vacuoles (Fig. 1A). Nuclei contained a very distinct nucleolus. Meronts ranged from 5.6 x 2.8 (with two nuclei, Fig. 1A) to 8.4 x 8.4 (with six nuclei, Fig. 1B), their PVs sizes ranged from 7 x 4.2 to 11.2 x 7.7. Premature meronts were seen with up to eight nuclei per section and dividing meronts showed up to ten emerging merozoites (Figs. 2, 3, 5).

Young microgamonts with eight to nine nuclei were 7-9 x 6.2-8.4 in size, and were located in a 9.8-12.6 x 8.4-11.2 PV (Figs. 1C). The cytoplasm was lucent to foamy and the nuclei had a homogeneous consistency (Figs. 2, 3). Premature and mature microgamonts, 11.2-14.0 x 6.2-8.0 in size (Figs. 1D, E), were lodged in a 16.8-18.2 x 9.8-14.0 PV. Toward the completion of differentiation the microgamont cytoplasm became increasingly vacuolated.
SCHELLACKIA CALOTESI N. SP. FROM AGAMID LIZARDS OF THE GENUS CALOTES IN THAILAND

Figs. 2 to 6. – View of histological cross sections in the anterior portion of the intestine; double infections in host cells shown in Fig. 2 ii & z, and Fig. 4 a & z and o & o; arrows denote the limits of the basal membrane (Fig. 6); GMA-embedded, glass knife/JB4-sectioned, MH-E stained (Figs. 2, 3, 5, 6x650; 4x830).

Figs. 7-8. – Fig. 7. Sporozoites in the liver, adjacent to macrophages (m) and melanoma-crophages (M), smear, Giemsa stained (× 500). Fig. 8. Sporozoites in the blood erythrocytes (arrows), Giemsa-stained blood film (× 1100).

Abbreviations: a: young macrogamont; E: epithelium; i: mature microgamont; ii: premature microgamont; Lp: lamina propria; o: oocysts; s: premature meronts; z: zygote.

Parasite, 1998, 5, 23-26
Parts of the cytoplasm seemingly disaggregated, while retaining a dense cytoplasm where a few residual or non-differentiated nuclei remained. Microgametes flagella were conspicuously long (Figs. 3, 4).

Macrogamonts had a characteristically large vesicular nucleus with a large, deep-staining nucleolus (Fig. 4). Young macrogamonts, 7.0-8.4 × 7.0-8.0 in size (Fig. 1F), had a homogenous cytoplasm, with large vacuoles (apparently amylopectin granules) appearing gradually with maturation (Figs. 1F, 3, 4). In apparently mature 7.0-9.8 × 8.4-9.0 macrogamonts more than half of the cytoplasm volume was filled with amylopectin granules and wall-forming bodies were visible (Fig. 1G). Both young and mature forms were lodged in 9.8-10.5 × 8.4-9.8 PVs.

Zygotes or early oocysts reached 15.4 × 9.8 in size, and were lodged in a PV reaching up to 19.6 × 11.2 in size (Figs. 1H, 2, 4). They were densely filled with amylopectin granules and in their nuclei, the nucleolus became less conspicuous or disappeared. Wall-forming bodies, conspicuous (type 2) and minute (type 1) occurred in the cytoplasm, the first concentrated mainly along the oocyst wall (Fig. 1G).

Mature oocysts were almost round (9.8-10.5 × 9.0-9.8), lodged in 11.2-11.8 × 9.8-10.5 PVs, and densely filled with amylopectin granules. The centrally located nucleus had an irregular perimeter and was homogeneously dense. Wall-forming bodies, or their disaggregated product, were concentrated beneath the rims of the oocyst wall (Figs. 1H, 4, 5). Mature oocysts occurred in both the epithelial layer (Figs. 2, 4), and lamina propria (Figs. 5, 6); some appeared to be pressing the basal membrane into the lamina propria layer (Figs. 4, 5). None of these oocysts were sporulating, and there were no free sporozoites. The latter were found in another, naturally infected specimen, in the liver, next or inside melanomacrophages (Fig. 7). In the same host, all oocysts had disappeared from the intestine, and in the blood only, erythrocytes were found infected (Fig. 8). Sporozoites were 8.4-10.5 × 2.6-5; their nucleus was in a somewhat anterior position and the two refractile bodies were located in the post-nuclear zone (Fig. 1I).

DISCUSSION

Species of *Schellackia* demonstrate limited interspecific morphological diversity, and the variability in each stage's dimensions (added to the inevitable variation due to processing) is sufficiently large to result in overlapping size ranges among the same stages of different species, even of walled oocysts prior to sporulation or waiting intra-erythrocytic sporozoites. However, species may be otherwise distinguished according to the particular site at which macrogamont fertilization and sporozoites formation occurs, e.g. either in the lamina propria or in the gut epithelial cells, and the sporozoites location in cells and tissues (Lainson et al., 1976; Klein et al., 1988; Paperna & Finkelman, 1996). Discrimination according to these criteria, restricts the number of species similar to the presently described one to the two species infecting agamid lizards, namely *S. agamae* (by Rogier, 1974) and *S. cf. agamae* (by Bristovetzki & Paperna, 1990). High host specificity among *Schellackia* spp. has been suggested (Lainson et al., 1976) and recently has been experimentally also demonstrated, at least at the family level for *S. occidentalis*. *S. golvanii* (Klein et al., 1988) and *S. cf. agamae* (Bristovetzky & Paperna, 1990).

PVs of all developing stages of presently described species, except mature oocysts, were relatively larger than the PVs of other species. The flagella of the microgametes were particularly long. Unlike in the other other species from agamids, sporozoites were not found in circulatory leucocytes. On the other hand, sizes of all stages of *Schellackia* from *Agama* spp. (Rogier, 1977; Bristovetzky & Paperna, 1990; Paperna, 1992) and of *S. calotesi* overlap. Nevertheless, difference in the host genus (*Agama vs. Calotes*) and geographical origin (Africa and Near East vs. Thailand) seems to be satisfactory arguments for specific distinction.

REFERENCES

Paperna I & Finkelman S. *Schellackia ptyodactyli* sp. nov. of the fanfooted gecko *Ptyodactylus basilewskyi* from the rift escarpment of the lower Jordan Valley. *Folia Parasitol.*, 1996, 43, 161-172.

Reçu le 10 juin 1997
Accepté le 19 juillet 1997