IMMUNOLOGICAL SURVEY OF BABESIOSIS (BABESIA PEIRCEI) AND TOXOPLASMOsis IN JACKASS PENGUINS IN SOUTH AFRICA

Summary :

Babesia peircei was extracted from nucleated erythrocytes of naturally infected Jackass penguin (Spheniscus demersus) from South Africa (SA). Babesia peircei glycoprotein-enriched fractions were obtained by concanavalin A-Sepharose affinity column chromatography and separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). At least 14 protein bands (9, 11, 13, 20, 22, 23, 24, 43, 62, 90, 120, 204, and 205 kDa) were observed, with the major protein at 25 kDa. Blood samples of 191 adult S. demersus were tested by enzyme-linked immunosorbent assay (ELISA) utilizing B. peircei glycoprotein-enriched fractions to detect anti-B. peircei IgG. The samples originated from three groups of free-ranging penguins (n = 110), 1 group of penguins (n = 66) which were rescued after offshore oil-spill contaminations and rehabilitated at the South African National Foundation for the Conservation of Coastal Birds (SANCCOB), and the final group from SANCCOB-resident penguins (n = 15). The overall B. peircei seroprevalence was 65 %, and the mean seropositivity ranged from 60 to 71 % among the five pigeon groups. The ELISA appeared to be specific for B. peircei IgG as tested against Haemoproteus columbae IgG and avian malaria (Plasmodium relictum, and P. elongatum) IgG. Toxoplasma gondii antibody (Ab) were detected by the direct agglutination test using killed T. gondii tachyzoites. All birds were seronegative for T. gondii Ab. The lack of T. gondii-positive penguins was due to the appropriate sanitary conditions and anti-Toxoplasma prevention procedures utilized by the SANCCOB.

KEY WORDS : Babesia peircei, Jackass penguin, African black-footed penguin, Spheniscus demersus, Toxoplasma gondii, ELISA, SDS-PAGE.

Résumé : Extraction et utilisation d'antigène de Babesia peircei en ELISA et séronégativité pour Toxoplasma gondii de Spheniscus demersus en Afrique du Sud

Babesia peircei a été extrait d'érythrocytes nucléées provenant de Spheniscus demersus originaires d'Afrique du Sud infectés naturellement. Des fractions de Babesia peircei enrichies en glycoprotéines ont été obtenues par chromatographie sur colonne d'affinité concanavaline A-Sepharose et séparées par électrophorèse en gel de polyacrylamide-dodecylsulfate de sodium (SDS-PAGE). Quatorze bandes protéiques au minimum ont été observées (9, 11, 13, 20, 22, 23, 24, 43, 62, 90, 120, 204, et 205 kDa), la protéine majeure étant de 25 kDa. Des prélèvements sanguins provenant de 191 S. demersus adultes ont été testés par ELISA en utilisant les fractions de B. peircei enrichies en glycoprotéines pour détecter les IgG dirigées contre B. peircei. Les prélèvements provenaient de trois groupes de manchots sauvages (n = 110), d'un groupe de manchots (n = 66) ayant été secourus après avoir été contaminés par une marée noire en mer et soignés à la Fondation Nationale Sud Africaine pour la Conservation des Oiseaux littoraux (SANCCOB), et d'un dernier groupe issu des manchots pensionnaires du SANCCOB (n = 15). La prévalence globale pour B. peircei était de 65 %, et la séropositivité moyenne s'échelonnait de 60 à 71 % parmi les cinq groupes de manchots. L'ELISA apparaissait spécifique pour les IgG dirigées contre B. peircei. Lorsque testée pour les IgG contre Haemoproteus columbae et les IgG contre le paludisme aviaire (Plasmodium relictum, et P. elongatum), les anticorps (Ac) dirigés contre Toxoplasma gondii ont été détectés par le test d'agglutination directe utilisant des tachyzoïtes de T. gondii tues. Tous les oiseaux étaient séronégatifs pour les Ac dirigés contre T. gondii. L'absence de manchots positifs pour T. gondii était due aux conditions sanitaires appropriées et aux méthodes de prévention contre T. gondii utilisées par le SANCCOB.

The Jackass or African black-footed penguin, Spheniscus demersus, is an endangered species with decreasing populations in its natural habitat on coastal islets of South Africa (SA) (Crawford et al., 1990). Frequent offshore oil-spill contamination presents the most devastating hazards for existing wild populations. The spills debilitate, injure, and induce disease in penguins (Erasmus et al., 1981; Kerley et al., 1985). The disabled penguins are rehabilitated in the rescue station of the South African National Foundation for the Conservation of Coastal Birds (SANCCOB) in Milnerton (33°55'S, 18°22'E), Cape Town, SA, and released later into the wild.
An intraerythrocytic piroplasm of free-ranging *S. demersus* originally described as *Aegyptianella* sp. (Coles, 1941) was reidentified as *Babesia* sp. (Bennett et al., 1992) and named *Babesia peircei* (Earlé et al., 1993). *Babesia peircei* associated babesiosis is common and endemic in wild *S. demersus* and contributes to illness when associated with avian malaria (Brossy, 1992; 1993). The prevalence of *B. peircei* parasitemia in *S. demersus* rehabilitated at SANCCOB varied from 11 to 15%, and was 4% in free-ranging birds (Brossy, 1993). A putative *S. demersus* (Brossy, 1992; 1993). The prevalence of *S. demersus* (Brossy, 1992; 1993) and named *et al*, 1993).

Fatal *Toxoplasma gondii* associated toxoplasmosis was reported in captive Humboldt’s penguins (*S. humboldti*). Magellanic penguins (*S. magellanicus*), and *S. demersus* in North America (Ratcliff & Worth, 1951). Another case of fatal toxoplasmosis, diagnosed histologically and immunologically, occurred in Tasmania, Australia, in *E. minor* (Mason et al., 1991) fed with sheep meat (Clarke & Knowles, 1993) by a person who boarded many cats (Mason et al., 1991). *Toxoplasma gondii* infections are common in many domestic and wild bird species (Dubey & Beattie, 1988).

The availability of penguins undergoing rehabilitation at SANCCOB and access to free-ranging birds offered an opportunity for serological screening of the birds for pathogens. It is crucial in penguin management to assess accurately naturally occurring exposure to the pathogens in free-ranging *S. demersus* in order to determine the impact of exposure to oil contamination on the penguin's immunological competence, and to evaluate the risk of releasing possibly infected birds into the wild after rehabilitation. Availability of the *S. demersus*-specific conjugate for use in enzyme-linked immunosorbent assay (ELISA) (Graczyk et al., 1994a) facilitates serological monitoring of Jackass penguins for infections with parasites. The direct agglutination test, using mercaptoethanol (Dubey & Desmonts, 1987), appears to be the most specific for detecting active *T. gondii* infections, especially in avian species.

The primary purpose of the present study was to develop and characterize the glycoprotein antigen of *B. peircei* for use in ELISA, and to determine the exposure of free-ranging *S. demersus* to this pathogen by detection of anti-*B. peircei* IgG. Additionally, we serologically screened penguins rehabilitated at SANCCOB facilities and free-ranging birds for infection with *T. gondii*.

MATERIALS AND METHODS

A total of 191 blood samples from five groups of adult *S. demersus* were collected from December 1993 to July 1994 at SANCCOB (Brossy, 1992), air-dried, and stored on filter paper as described by Graczyk et al. (1993). The samples originated from three groups of free-ranging penguins from offshore islands (Dassen Island and Robben Island) and mainland colony (Boulders, Simons Town), from penguins rescued after offshore oil-spill contaminations and rehabilitated at SANCCOB, and from SANCCOB-resident penguins. The penguins were screened for blood parasites by Giemsa-stained thin blood smears (Brossy, 1992), and a total of 10 ml of blood was collected from four penguins with the highest *B. peircei* parasitemia. Five thin blood smears were prepared and examined (Graczyk et al., 1994b) from the blood sample, and 10 (30 µl each) blood samples were air-dried and stored on filter paper. Parasites were identified based on the description of Earle et al. (1993). The parasitemia was presented as a mean % (± SD) of parasitized erythrocytes per 2,000 red blood cells (RBC) derived from five counts. The blood for parasite extraction was centrifuged (10,000 g, 10 min) at 4° C, and the plasma was stored at −70° C. The packed RBC were subjected to two freeze/thaw (−70° C/4° C) cycles and resuspended in 10 ml of phosphate buffered saline (PBS) (pH 7.4). Two hundred µl of N,N',N'-polyoxyethylene(10)-N-tallow-1,3-diaminopropane (EDT-20) (Sigma Chemical Co., St. Louis, Missouri, USA), diluted 1/1 with deionized water, was added per 1.0 ml of the preparation, and the solution was incubated for 20 min at 41° C. EDT-20 is a water-soluble cationic detergent that targets lipoproteins and lipids without denaturing proteins (Schutte & Kula, 1990). The remainder of the protocol for parasite extraction including a 4-step Percoll gradient centrifugation (4,000 g, 30 min) followed that of Graczyk et al. (1994c). The pellet containing the particles of RBC and the supernatant from the final parasite centrifugation were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) to determine the purity of *B. peircei* preparation.

The preparation of *B. peircei* went through a freeze/thaw cycle (−70° C/41° C) five times, sonication (6 × 15 sec) (VirSonin Cell Disrupter, The Virtic Co., Gardiner, New York, USA), and centrifugation (10,000 g, 10 min). The antigenic extract (AE) was collected and dialyzed overnight against 0.02 M Tris PBS (pH 7.4) at 4° C and cleared by centrifugation (10,000 g, 10 min). Protein concentration determined by bovine serum albumin (BSA) assay (Pierce, Rockford, Illinois, USA) was 3.1 µg/µl. Glycoprotein-enriched fractions of the *B. peircei* AE for use in the ELISA were obtained by concanavalin agglutinin (Con A) – Sepharose 4B (Sigma Chemical Co., St. Louis, Missouri, USA) affinity column chromatography (De Repentigny et al., 1991). Two glycoprotein-enri-
ched fractions were obtained following the primary and secondary elution of the column (Fig. 1). The first and the second fraction contained 1.5 and 1.1 μg/μl proteins, respectively, as determined by the BSA assay. Con A-bound fractions of B. peircei AE were incubated for 5 min at 95°C and separated by SDS-PAGE with a 15 % gel (Jule Biotechnologies Inc., New Haven, Connecticut, USA) run at 100 V constant voltage for 7 h at 21°C in electrode buffer (De Repentigny et al., 1991) and stained with Coomassie blue (Laemmli, 1970). To determine the purity of the B. peircei AE, the RBC extraction-derived particles were processed by Con A-Sepharose 4B affinity column chromatography in the same manner. Prestained broad range molecular weight standards (Bio-Rad Laboratories, Hercules, California, USA) were used. To further determine purity of the antigen, the glycoprotein enriched fractions of B. peircei AE and RBC were separately electroeluted (Electro-Eluter M422, Bio-Rad Laboratories, Richmond, California, USA) and, after determination of protein concentration, eluted fractions were used to coat the ELISA plate at the same concentration (Graczyk & Cranfield, 1995).

For the indirect ELISA detection of anti-B. peircei IgG, whole blood, air-dried on filter paper and eluted into buffer, was used (Graczyk et al., 1993). Filter paper storage does not diminish IgG binding capacity (Graczyk et al., 1993). ELISA was performed with Immulon 2 microtitration plates (Dynatech Laboratories Inc., Chantilly, Virginia, USA). The pooled Con A-bound fractions were used as an antigen. The optimal antigen concentration for the ELISA with the positive control (PC) at a fixed 1/100 dilution with PBS and diluted 1/1,000 with PBS alkaline phosphatase-labelled rabbit anti-S. demersus IgG (Graczyk et al., 1994a) was determined by serial antigen dilutions. The PC was whole blood eluted from filter paper of the penguin from which B. peircei was extracted. The penguin samples were assayed in duplicate, eight wells were not coated with antigen to determine nonspecific background absorbance (NBA), and eight wells were filled with each of PC and negative control (NC). The NC was a blood pool from three, adult captive-reared S. demersus kept indoors. The positive cutoff level was established as an absorbance greater than the mean ± 3 SD of 8 NC. Sensitivity of the ELISA was determined by testing PC at dilution of 1/100, 1/200, 1/400, 1/800, 1/1,600, 1/3,200, and 1/6,400. The remainder of the ELISA protocol followed previously described procedures (Graczyk et al., 1994a), and the method of Schwartz et al. (1991) was used to compare the absorbance values from different ELISA plates.

To determine the specificity of the indirect ELISA, the plate was coated with B. peircei antigen. Following post-coating with casein blocking buffer (Graczyk et al., 1993), the wells were filled in duplicate with PC and with two blood samples of 2-wk-old Peking ducklings (Anas platyrhynchos) experimentally infected with Plasmodium relictum and P. elongatum, respectively, and blood sample from Rock dove pigeon (Columba livia) naturally infected with Haemoproteus columbae. Additionally, the wells were filled with blood samples of two captive adult S. demersus naturally clinically infected with P. relictum and P. elongatum, respectively, and the blood sample from wild S. demersus known to be positive for malarial IgG (Graczyk et al., 1995). All blood samples were air-dried and stored on filter paper, eluted into the buffer and diluted 1/100 with PBS. Buckling, pigeon, and captive penguins infections were determined by ELISA (Graczyk et al., 1994c) and were confirmed by parasitemia found on the Giemsa-stained thin blood films. The remainder ELISA protocol followed previous procedures (Graczyk et al., 1994c) utilizing bird species-specific conjugates.

To determine the presence of T. gondii agglutinating antibody (Ab), a modified direct agglutination test with killed T. gondii tachyzoites was carried out (Desmonts & Remington, 1980). In a modified test, 2-mercaptoethanol was incorporated into the antigen instead of into the blood sample to avoid prolonged exposure to toxic fumes (Dubey & Desmonts, 1987). Positive and NC controls were prepared as described previously (Dubey & Desmonts, 1987). All blood samples were assayed at 1/25, 1/50, and 1/500 dilution with PBS (pH 7.4) on U-bottom well microtitre plates (Dynatech Laboratories Inc., Chantilly, Virginia, USA) with T. gondii PC and NC included on each plate.

Statistical analysis was carried out with Analytical Software Statistix 4.1 (Analytical Software, St. Paul, Minnesota, USA). The absorbance values of ELISA-positive penguins were tested by the approximate Wilk-Shapiro statistic to determine if their distribution conforms to a normal distribution. Analysis of variance (ANOVA) was carried out to determine the significance of among-penguin group effects in absorbance values. A two-sample t-test was used to compare the mean absorbance between penguin groups, and the G-heterogeneity test (Sokal & Rohlf, 1981) was applied to compare B. peircei seroprevalence among penguin groups. The absorbance reference range for B. peircei parasitemia was established according to the protocol of Lumeij (1994) as mean (x) ± 3 SD of 48 absorbance values obtained in the indirect ELISA for the parasitic penguin blood. Statistical significance was considered to be P < 0.05.

RESULTS

Babesia peircei parasitemia in the 10-ml blood samples varied within the limits of 78 to 87 %; with a mean (± SD) = 81.6 ± 4.1 %.
Fig. 1. — Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of glycoprotein-enriched fractions obtained by concanavalin A-Sepharose 4B affinity column chromatography with intraerythrocytic stages of Babesia peircei extracted from naturally infected Jackass penguins (Spheniscus demersus) rescued after offshore oil-spill contamination and rehabilitated at the Rescue Station of the South African National Foundation for the Conservation of Coastal Birds (SANCCOB) in Milnerton, Cape Town, South Africa. Babesia peircei antigenic fractions obtained by the primary (lane B) and secondary elution of the column (lane A). Lane C, supernatant from the final step of extraction. Lane D, fraction of erythrocytes from which the parasites were extracted. Prestained broad range molecular weight standards stained with Coomassie blue in kilodaltons (kDa).

Two parasites per erythrocyte were observed in 38.5-42.5% (x; 40.2 ± 1.8%) of examined cells. In the majority of singly and doubly infected RBC, the parasites were situated on the polar end of the erythrocyte or displayed bilateral polar symmetry of location. The round, spherical, ovoid, and elongated merozoites were the most common form of the parasite. Divided elongated merozoites (presented in a low-parasitemia sample) which formed tetrads, were rare, occurred singly in erythrocytes, and were usually not on the RBC polar end (Fig. 1). Two forms of the tetrad were observed in the Giemsa-stained thin blood films (Fig. 1). Extracellular stages of B. peircei were not observed.

Analysis of B. peircei protein showed that at least 14 bands ranging from 9 to 205 kDa were seen in SDS-PAGE and Coomassie blue staining of the first glycoprotein-enriched fraction. The molecular sizes of these glycoproteins were 9, 11, 13, 20, 22, 23, 24, 43, 62, 90, 120, 204, and 205 kDa, with the major glycoprotein 25 kDa (Fig. 2). All bands > 25 kDa were faint. Erythrocyte particles derived from B. peircei extraction process displayed two major comigrating bands (10 and 12 kDa), and two bands of 26 and 60 kDa. Erythrocyte proteins eluted for the gel produced negative results when used in the ELISA. The reference absorbance range for B. peircei parasitemia was 0.45 to 0.81. Using optimal antigen concentration of 5 μg/ml, it was possible to detect B. peircei IgG at the PC dilution of 1/3,200. The estimates of

<table>
<thead>
<tr>
<th>Geographical origin of penguins</th>
<th>Penguins</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total number</td>
<td>Positive* number</td>
</tr>
<tr>
<td>** Dassen Island 33°26'S 18°04'E</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>** Robben Island 33°49'S 18°22'E</td>
<td>46</td>
<td>29</td>
</tr>
<tr>
<td>** Mainland 34°14'S 18°26'E</td>
<td>34</td>
<td>22</td>
</tr>
<tr>
<td>*** SANCCOB 34°14'S 18°26'E</td>
<td>66</td>
<td>47</td>
</tr>
<tr>
<td>**** SANCCOB 34°14'S 18°26'E</td>
<td>15</td>
<td>9</td>
</tr>
</tbody>
</table>

* Above the cutoff level of 0.16.
** Free-ranging penguins.
*** Penguins rescued after offshore oil-spill contamination.
**** Resident penguin population.

Table 1. — Seroprevalence for Babesia peircei IgG determined by the indirect enzyme-linked immunosorbent assay (ELISA) of adult Jackass penguins (Spheniscus demersus) at the Rescue Station of the South African National Foundation for the Conservation of Coastal Birds (SANCCOB) in Milnerton, Cape Town, South Africa.
The blood samples of five penguin groups listed in Table I, respectively, showed that the absorbance values were normally distributed. The seroprevalence of B. peircei IgG ranged from 60 to 71% among the five penguin groups listed in Table I, with an overall seroprevalence of 65% (125 of 191). The G-heterogeneity test showed a nonsignificant effect in the prevalences of B. peircei seropositivity among these groups (G = 1.07, P > 0.05). The absorbance values of positive penguins varied within the limits of 0.20 to 1.00, with the total mean absorbance (+ SD) of 0.48 ± 0.19. The absorbance values varied nonsignificantly among the three groups of free-ranging S. demersus (ANOVA; F = 1.07, P > 0.05). The absorbance values (G = 1.07, P > 0.05) of Boulders penguins, and 19 of 48 (40%) of oiled birds, and 8 of 9 (89%) of penguin-resident at SANCCOB. The G-heterogeneity test showed a nonsignificant effect having absorbance values exceeding the reference range of 0.45 established for 0.05). The absorbance values among the three groups of free-ranging S. demersus (ANOVA; F = 1.07, P > 0.05). The absorbance values of positively infected with avian malaria gave negative results in the indirect ELISA utilizing naturally infected with B. peircei. Toxoplasma gondii Ab were not detected in penguin plasmas.

DISCUSSION

More in depth immunologic studies on avian babesiosis are needed to interpret the prevalence range of B. peircei seroconversion of Jackass penguins. A comprehensive review of penguin diseases and parasites (Clarke & Knowles, 1993) listed six species of Ixodes and three species of Ornithodoros ticks from 14 species of penguins; however, only Ornithodoros capensis was reported from free-ranging S. demersus (Daturi, 1986; Duffy & Daturi, 1987; Brosy, 1993). It was documented that penguins that reuse the same colony and nest sites for generations are particularly vulnerable to ticks and tick-transmitted pathogens (Duffy, 1991). Ixodes uriae, implicated as a vector for B. peircei (Earle et al., 1993) is distributed worldwide having even been reported from the Antarctic Peninsula (Clarke & Knowles, 1993). However, only O. capensis is present in the natural habitat of Jackass penguins (Daturi, 1986; Duffy & Daturi, 1987; Brosy, 1993) indicating that O. capensis is probably a transmitting agent of B. peircei. The mean tick load was 1.0 ± 1.64 per adult S. demersus and 2.0 (range 1-50) per nesting on the Marcus Island, SA (Duffy, 1991). The low tick infestation in that study was explained by the presence of ants (Duffy, 1991), but weather patterns play an important role in tick prevalence.

The ELISA results in our studies indicated that the seroprevalence of B. peircei was uniformly distributed among the five populations of Jackass penguins. If the bovine/equine model (Spickett & Fivaz, 1992; Fivaz & De Waal, 1993) of babesiosis is applicable to free-ranging penguins, the observed uniformity of seroconversion may reflect the uniformity in the exposure to the tick.

Glycoproteins of a number of the protozoans parasitizing erythrocytes have been shown to be parasite stage-specific, and to be the most immunogenic fraction of the parasite surface proteins (Mitchell & Anders, 1982). The penguin RBC-derived glycoproteins in this study showed two major comigrating bands (10 and 12 kDa) of close molecular weight to the minor glycoproteins of the pathogen a fraction (9, 11, and 13 kDa). Therefore, B. peircei extract should be assayed by SDS-PAGE before use in the ELISA in order to determine if it is contaminated with foreign glycoproteins. The antigenic extract contained the proteins of at least nine intraerythrocytic stages of B. peircei (Earle et al., 1993), and IgG responses against other avian blood parasitic protozoa (H. columbae, P. relictum and P. elongatum) were not specific to B. peircei, as determined by the ELISA. We conclude that the humoral responses were directed against blood stages of B. peircei. However, except in the penguins from which B. peircei was extracted, the relationship between IgG magnitude and parasitemia level remain unknown. Serological studies on captive S. demersus naturally infected with avian malaria show that IgG responses do not correlate with parasitemia (Graczyk et al., 1994). Further studies are necessary to investigate if this is also the case for B. peircei infections. In non-oiled penguins, ticks are primarily around the eyes, at the commissures of the mouth, on the webs between the toes, and around the cloaca (Clarke & Knowles, 1993). Thus, we do not feel oil-impaired feather make Jackass penguins more vulnerable to ticks feeding. However, oiled Jackass penguins can develop fatal infections with Salmonella typhimurium and Staphylococcus aureus (Westphal & Rowan, 1970), and mount weaker Ab responses against avian malaria (Graczyk et al., 1995). Interestingly, B. peircei was described as a new species from oiled Jackass penguins (Earlé et al., 1993).

Toxoplasmosis is always a concern in bird centers because high density of birds favor transmission of the
pathogen and the fatal cases, including penguins, were reported from such centers (Ratcliff & Worth, 1951; Hubbard et al., 1986; Hartley & Dubey, 1991). Ratcliff & Worth (1951) reported fatal toxoplasmosis in four S. humboldti, two S. magellanicus, and seven S. demersus at the Philadelphia Zoo (USA). The seven S. demersus were healthy but became ill one week after arrival at the Zoo; it is most likely that penguins acquired toxoplasmosis at the Zoo.

In the present study, Ab to T. gondii in diluted penguin sera were tested by the direct agglutination test. Unlike the Sabin-Feldman dye test, the direct agglutination test has proved to be highly sensitive for the detection of T. gondii Ab in many avian species including owls, quails, turkeys, chickens, pheasants, and partridges experimentally infected with T. gondii (Dubey et al., 1995). Many avian species including chickens and turkeys do not develop appropriate Ab for the dye test (Frenkel, 1981).

The negative outcome in our Toxoplasma survey indicates that none of the penguins had contracted T. gondii tachyzoites at the time of blood sample collection. The lack of T. gondii-positive penguins in SANCOCB facilities indicates appropriate sanitary conditions and successful anti-Toxoplasma management prevention procedures used by the center.

ACKNOWLEDGEMENTS

We thank the South African National Foundation for the Conservation of Coastal Birds (Cape Town, South Africa), the National Park Board of South Africa, the West Cape Nature Conservation, and the South African Correctional Services located on Robben Island (South Africa) for facilitating collection of the penguin blood samples. This study was supported by the AKC Fund of New York (New York, USA).

REFERENCES

BROSSY J.J. Malaria in wild and captive Jackass penguins Spheniscus demersus along the southern African coast. Ostrich, 1992, 63, 10-12.

GRACZYK T.K., CRANFIELD M.R. & SHIFF C.J. ELISA method for detecting anti-Plasmodium relictum and anti-Plasmodium elongatum antibody in infected ducking sera using Plas...
IMMUNOLOGICAL SURVEY OF BABESIOSIS (Babesia peirci) AND TOXOPLASMOSIS IN JACKASS PENGUINS IN SOUTH AFRICA

