--- output: word_document: default html_document: default --- F--- title: "All analysis_Impact of irradiation and transportation on G. morsitans morsitans" author: "Mirieri et al.," date: "12-06-2024" output: word_document --- Load library ```{r} library(datasets) library(gcookbook) library(ggplot2) library(plyr) library(dplyr) library(lattice) library(MASS) library(rcompanion) library(survival) library(ranger) library(ggfortify) library(rmarkdown) library(knitr) library(coxme) ## Graphics library(lattice) library(tidyverse) library(gapminder) library(FSA) library(stats) library(RCA) #library(broom) library(sp) library(ggpubr) library(AICcmodavg) library(car) library(ggthemes) ## Mixed generalized linear models library(lme4) library(MuMIn) library(nlme) library(survminer) ``` Working directory ```{r setup, include=FALSE, echo=FALSE} require("knitr") opts_knit$set(root.dir ="D:/2024/Final folder_irrtrans_06022024/Raw data_14022022_CMK/June 2024") ``` ANALYSIS OF THE IMPACT OF IRRADIATION AND TRASPORATION(22-day old only/29-day old only) MAIN FIGURES (MANUSCRIPT FIGURES) Figure 1:Emergence rate(22 and 29 days)-differences between ages within each treatment ```{r} tab1= read.csv("Figure 1.csv") head(tab1) Emerg_rate<- tab1$emerged / (tab1$unemerged+ tab1$emerged) tab1$Pupal_age<- as.factor(tab1$Pupal_age) Figure_1<-ggplot(tab1, aes(x=factor(Treatments),y=Emerg_rate, colour=Pupal_age)) + geom_boxplot(position=position_dodge(0.8))+ geom_jitter(position=position_dodge(0.8)) Figure_1 tiff("Figure 1.tiff", width = 7, height = 4, units = 'in',compression = 'lzw',res = 300) plot(Figure_1+theme_tufte() + theme(axis.line = element_line(size = 1, colour = "black")) + theme(legend.title = element_text(face = "bold")) + theme(legend.text = element_text(face = "italic"))) + theme(axis.text.x = element_text(colour = "black")) + theme(axis.text.y = element_text(colour = "black")) + xlab(expression(bold("Treatments"))) + ylab(expression(bold("Emergence rate"))) dev.off() #### Significance of treatments ##22 days Age22_fig1 <- subset(tab1, Pupal_age== "22") head(Age22_fig1) Age22_fig1$rate <- Age22_fig1$emerged/ (Age22_fig1$unemerged+ Age22_fig1$emerged) fm1_22 <- glmer(cbind(emerged, unemerged) ~ Treatment +(1|Replicate), family = binomial, data =Age22_fig1) summary(fm1_22) ##29 days Age29_fig1 <- subset(tab1, Pupal_age== "29") head(Age29_fig1 ) Age29_fig1 $rate <- Age29_fig1 $emerged/ (Age29_fig1 $unemerged+ Age29_fig1 $emerged) fm1_29 <- glmer(cbind(emerged, unemerged) ~ Treatment +(1|Replicate), family = binomial, data = Age29_fig1 ) summary(fm1_29) ``` Figure 2:Flight propensity(22 and 29 days)-differences between ages within each treatment ```{r} ##"flight propensity combined data tab2= read.csv("Figure 2.csv") head(tab2) Flight_rate<- tab2$out / (tab2$in.+ tab2$out) tab2$Pupal_age<- as.factor(tab2$Pupal_age) Figure_2<-ggplot(tab2, aes(x=Treatments,y=Flight_rate, colour=Pupal_age)) + geom_boxplot(position=position_dodge(0.8))+ geom_jitter(position=position_dodge(0.8)) Figure_2 tiff("Figure 2.tiff", width = 7, height = 4, units = 'in',compression = 'lzw',res = 300) plot(Figure_2+theme_tufte() + theme(axis.line = element_line(size = 1, colour = "black")) + theme(legend.title = element_text(face = "bold")) + theme(legend.text = element_text(face = "italic"))) + theme(axis.text.x = element_text(colour = "black")) + theme(axis.text.y = element_text(colour = "black")) + xlab(expression(bold("Treatments"))) + ylab(expression(bold("Flight propensity"))) dev.off() ###### Significance of treatments ##22 days Age22_fig2 <- subset(tab2, Pupal_age== "22") head(Age22_fig2 ) Age22_fig2 $rate <- Age22_fig2 $out / (Age22_fig2 $in. + Age22_fig2 $out) fm2_22 <- glmer(cbind(out,in.) ~ Treatment +(1|Replicate), family = binomial, data = Age22_fig2 ) summary(fm2_22) ##29 days Age29_fig2 <- subset(tab2, Pupal_age== "29") head(Age29_fig2) Age29_fig2$rate <- Age29_fig2$out / (Age29_fig2$in. + Age29_fig2$out) fm2_29 <- glmer(cbind(out,in.) ~ Treatment +(1|Replicate), family = binomial, data = Age29_fig2) summary(fm2_29) ``` Figure 3: Mating ability(22 and 29 days)-differences between ages within each treatment ```{r } #####################-combined data###Figure 3 tab3= read.csv("Figure 3.csv") head(tab3) mating_prop<- tab3$pairs_formed / (tab3$unformed_pairs+ tab3$pairs_formed ) tab3$Pupal_age<- as.factor(tab3$Pupal_age) Figure_3<-ggplot(tab3, aes(x=Treatments,y=mating_prop, colour=Pupal_age)) + geom_boxplot(position=position_dodge(0.8))+ geom_jitter(position=position_dodge(0.8)) Figure_3 tiff("Figure 3.tiff", width = 7, height = 4, units = 'in',compression = 'lzw', res = 300) plot(Figure_3+theme_tufte() + theme(axis.line = element_line(size = 1, colour = "black")) + theme(legend.title = element_text(face = "bold")) + theme(legend.text = element_text(face = "italic"))) + theme(axis.text.x = element_text(colour = "black")) + theme(axis.text.y = element_text(colour = "black")) + xlab(expression(bold("Treatments"))) + ylab(expression(bold("Mating ability"))) dev.off() #### Significance of treatments ##22 days Age22_fig3 <- subset(tab3, Pupal_age== "22") head(Age22_fig3 ) mating_prop <- Age22_fig3 $pairs_formed/ (Age22_fig3 $unformed_pairs+ Age22_fig3 $pairs_formed) fm3_22<- glmer(cbind(pairs_formed, unformed_pairs) ~ Treatment +(1|Replicate), family = binomial, data = Age22_fig3 ) summary(fm3_22) #29 days Age29_fig3 <- subset(tab3, Pupal_age== "29") head(Age29_fig3 ) mating_prop <- Age29_fig3 $pairs_formed/ (Age29_fig3 $unformed_pairs+ Age29_fig3 $pairs_formed) fm3_29 <- glmer(cbind(pairs_formed, unformed_pairs) ~ Treatment +(1|Replicate), family = binomial, data = Age29_fig3 ) summary(fm3_29) ###### Significance of treatments ``` Figure 4: Insemination rate(22 and 29 days)-differences between ages within each treatment ```{r } tab4= read.csv("Figure 4.csv") head(tab4) Insemination_rate<- tab4$Inseminated / (tab4$Empty+ tab4$Inseminated) tab4$Pupal_age<- as.factor(tab4$Pupal_age) Figure_4<-ggplot(tab4, aes(x=Treatments,y=Insemination_rate, colour=Pupal_age)) + geom_boxplot(position=position_dodge(0.8))+ geom_jitter(position=position_dodge(0.8)) Figure_4 tiff("Figure 4.tiff", width = 7, height = 4, units = 'in',compression = 'lzw', res = 300) plot(Figure_4+theme_tufte() + theme(axis.line = element_line(size = 1, colour = "black")) + theme(legend.title = element_text(face = "bold")) + theme(legend.text = element_text(face = "italic"))) + theme(axis.text.x = element_text(colour = "black")) + theme(axis.text.y = element_text(colour = "black")) + xlab(expression(bold("Treatments"))) + ylab(expression(bold("Insemination rate"))) dev.off() #### Significance of treatments ##22 days Age22_fig4 <- subset(tab4, Pupal_age== "22") head(Age22_fig4) Insemination_rate<- Age22_fig4$Inseminated / (Age22_fig4$Empty+ Age22_fig4$Inseminated) fm4_22 <- glmer(cbind(Inseminated,Empty) ~ Treatment +(1|Replicate), family = binomial, data = Age22_fig4) summary(fm4_22 ) ##29 days Age29_fig4 <- subset(tab4, Pupal_age== "29") head(Age29_fig4 ) Insemination_rate<- Age29_fig4 $Inseminated / (Age29_fig4 $Empty+ Age29_fig4 $Inseminated) fm4_29 <- glmer(cbind(Inseminated,Empty) ~ Treatment +(1|Replicate), family = binomial, data = Age29_fig4 ) summary(fm4_29) ###### Significance of treatments ``` Figure 5:Mean spermathecal value(22 and 29 days) differences between ages within each treatment ```{r } tab5= read.csv("Figure 5.csv") head(tab5) tab5$Pupal_age<- as.factor(tab5$Pupal_age) Figure_5<-ggplot(tab5, aes(x=Treatments,y=MSV, colour=Pupal_age)) + geom_boxplot(position=position_dodge(0.8))+ geom_jitter(position=position_dodge(0.8)) Figure_5 tiff("Figure 5.tiff", width = 7, height = 4, units = 'in',compression = 'lzw', res = 300) plot(Figure_5 +theme_tufte() + theme(axis.line = element_line(size = 1, colour = "black")) + theme(legend.title = element_text(face = "bold")) + theme(legend.text = element_text(face = "italic"))) + theme(axis.text.x = element_text(colour = "black")) + theme(axis.text.y = element_text(colour = "black")) + xlab(expression(bold("Treatments"))) + ylab(expression(bold("Mean Spermathecal Value (MSV)"))) dev.off() ###### Significance of treatments ##22 days Age22_fig5 <- subset(tab5, Pupal_age== "22") head(Age22_fig5) fm5_22<- lme(MSV ~ Treatment, random=~1|Replicate,data = Age22_fig5) summary(fm5_22) ##29days Age29_fig5 <- subset(tab5, Pupal_age== "29") head(Age29_fig5) fmS26<- lme(MSV ~ Treatments, random=~1|Replicate,data = Age29_fig5) summary(fmS26) ``` Figure 6a:Spermathecal fill distribution- 22 days-Chi square values ```{r } #first,full dataset tab <- read.csv("spermfill_22.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,5:6]) tab <- read.csv("spermfill_22.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,2:6]) tab<- read.csv("spermfill_22_ship_110Gy.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,2:6]) tab <- read.csv("spermfill_22_Shipped-0Gy .csv", sep=",") summary(tab) head(tab) chisq.test(tab[,2:6]) tab <- read.csv("spermfill_22_Unshipped-0Gy.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,2:6]) tab <- read.csv("spermfill_22_Unshipped-110Gy.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,2:6]) ``` Figure 6b: Spermathecal fill distribution- Chi square values ```{r } #first,full dataset tab <- read.csv("Spermfill_29.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,5:6]) tab <- read.csv("Spermfill_29_Ship-0Gy.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,2:6]) tab <- read.csv("Spermfill_29_Ship-110Gy.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,2:6]) tab <- read.csv("Spermfill_29_Unship-110Gy.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,2:6]) tab <- read.csv("Spermfill_29_Unshipped-0Gy.csv", sep=",") summary(tab) head(tab) chisq.test(tab[,2:6]) ``` Kaplan Meier Analysis (km)on the impact of treatments on the duration of survival of blood fed flies(trends) Figure 7a and 7b ```{r } ##Figure 7a:Comparing difference of trends between treatments(22 days old ) data_2=read.csv("Figure 7a.csv") #data_2 str(data_2) head(data_2) data_2=na.omit(data_2) names(data_2) km <- with(data_2, Surv(day, status)) head(km,115) km_trt_fit <- survfit(Surv(day, status) ~ Treatment, data=data_2) plot(survfit(Surv(day,status)~Treatments,data=data_2), xlab = "Time(days)", ylab = "Survival rate (22 day-old)", col=c('red','blue','green','orange'), lwd=2, xlim =c(0, 115)) legend('topright', text.font =, cex=1, c("Control","Shipped", "Irradiated","shipped_irradiated"), col=c('red','blue', 'green','orange'), lty = 1, lwd=2, box.lty = 1) ## survival: median Kaplan-Meier estimator survfit(Surv(day,status)~Treatment,data=data_2) #data_2$Treatment <- relevel(data_2$Treatment, ref = "Unshipped-0Gy") cox.surv <- coxph(Surv(day, status) ~ Treatment, data = data_2, method ="exact") summary(cox.surv) ``` Figure 7b:Comparing difference of trends between treatments(29 day old ) ```{r } data_3=read.csv("Figure 7b.csv") #data_3 str(data_3) head(data_3) data_3=na.omit(data_3) names(data_3) km <- with(data_3, Surv(day, status)) head(km,115) km_trt_fit <- survfit(Surv(day, status) ~ Treatment, data=data_3) plot(survfit(Surv(day,status)~Treatments,data=data_3), xlab = "Time(days)", ylab = "Survival rate (29 day-old)", col=c('red','blue','green','orange'), lwd=2, xlim =c(0, 115)) legend('topright', text.font = , cex=1, c("Control","Shipped", "Irradiated","shipped and irradiated"), col=c('red','blue', 'green','orange'), lty = 1, lwd=2, box.lty = 1) ### survival: median Kaplan-Meier estimator survfit(Surv(day,status)~Treatment,data=data_3) cox.surv <- coxph(Surv(day, status) ~ Treatment, data = data_3, method ="exact") summary(cox.surv) ``` Figure 7c and 7d: Survival trends- Kaplan Meier Analysis (km) ```{r } ##Figure 7c: Comparing difference of trends between treatments(combined data) data_1=read.csv("Figure 7c.csv") #data_1 str(data_1) head(data_1) data_1=na.omit(data_1) names(data_1) #Kaplan Meier Analysis (km) km <- with(data_1, Surv(day, status)) head(km,115) km_trt_fit <- survfit(Surv(day, status) ~ Treatments, data=data_1) plot(survfit(Surv(day,status)~Treatments,data=data_1), xlab = "Time(days)", ylab = "Survival rate(22 and 29 day-old)", col=c('red','blue','green','orange'), lwd=2, xlim =c(0, 115)) legend('topright', text.font = , cex=1, c("Control","Shipped", "Irradiated","shipped and irradiated"), col=c('red','blue', 'green','orange'), lty = 1, lwd=2, box.lty = 1) ### survival: median Kaplan-Meier estimator survfit(Surv(day,status)~Treatment,data=data_1) cox.surv <- coxph(Surv(day, status) ~ Treatment, data = data_1, method ="exact") summary(cox.surv) ####Figure 7d: Comparing difference of trends between ages(combined data) data_1=read.csv("Figure 7d.csv") km <- with(data_1, Surv(day, status)) head(km,115) km_trt_fit <- survfit(Surv(day, status) ~ Pupal_age, data=data_1) plot(survfit(Surv(day,status)~Pupal_age,data=data_1), xlab = "Time (days)", ylab = "Survival rate", col=c('red','blue'), lwd=2, xlim =c(0, 115)) legend('topright', text.font = , cex=1, c("22 day-old pupae","29 day-old pupae"), col=c('red','blue'), lty = 1, lwd=2, box.lty = 1) ### survival: median Kaplan-Meier estimator survfit(Surv(day,status)~Pupal_age,data=data_1) cox.surv <- coxph(Surv(day, status) ~ Pupal_age, data = data_1, method ="exact") summary(cox.surv) ``` Fig 8:Survival at point in time-figures (Binomial method) Figure 8a:survival at different time points (15,30,60 days) for each treatment (22 days) ```{r } data_8a<- read.csv("Figure 8a.csv") head(data_8a) data_8a$Time_point<- as.factor(data_8a$Time_point) Figure_8a<-ggplot(data_8a,aes(x=Time_point,y=surv_flies,fill=Time_point ))+geom_boxplot(position=position_dodge(0.8))+ geom_jitter(position=position_dodge(0.8))+ geom_boxplot(alpha=0.3) + labs(fill = "Time points(days)") + facet_wrap(~Treatments,ncol = 4) + theme_bw(base_size = 16) Figure_8a tiff("Figure 8a.tiff", width = 7, height = 4, units = 'in', compression = 'lzw',res = 300) plot(Figure_8a+theme_tufte() + theme(axis.line = element_line(size = 1, colour = "black")) + theme(legend.title = element_text(face = "bold")) + theme(legend.text = element_text(face = "italic"))) + theme(axis.text.x = element_blank()) + xlab(expression(bold("Time points (days)"))) + ylab(expression(bold("No.of surviving flies (Age 22 days)"))) dev.off() ``` Figure 8b:survival at different time points (15,30,60 days) for each treatment(29 days) ```{r } data_8b<- read.csv("Figure 8b.csv") head(data_8b) data_8b$Time_point<- as.factor(data_8b$Time_point) Figure_8b<-ggplot(data_8b,aes(x=Time_point,y=surv_flies,fill=Time_point ))+geom_boxplot(position=position_dodge(0.8))+ geom_jitter(position=position_dodge(0.8))+ geom_boxplot(alpha=0.3) + labs(fill = "Time points(days)") + facet_wrap(~Treatments,ncol = 4) + theme_bw(base_size = 16) Figure_8b tiff("Figure 8b.tiff", width = 7, height = 4, units = 'in',compression = 'lzw', res = 300) plot(Figure_8b+theme_tufte() + theme(axis.line = element_line(size = 1, colour = "black")) + theme(legend.title = element_text(face = "bold")) + theme(legend.text = element_text(face = "italic"))) + theme(axis.text.x = element_blank()) + xlab(expression(bold("Time points (days)"))) + ylab(expression(bold("No.of surviving flies (Age 29 days) "))) dev.off() ``` Figure 8c:survival at different time points (15,30,60 days) for each treatment (Combined data(22 and 29 days)) ```{r } data_8c<- read.csv("Figure 8c.csv") head(data_8c) data_8c$Time_point<- as.factor(data_8c$Time_point) Figure_8c<-ggplot(data_8c,aes(x=Time_point,y=surv_flies,fill=Time_point ))+geom_boxplot(position=position_dodge(0.8))+ geom_jitter(position=position_dodge(0.8))+ geom_boxplot(alpha=0.3) + labs(fill = "Time points(days)") + facet_wrap(~Treatments,ncol = 4) + theme_bw(base_size = 16) Figure_8c tiff("Figure 8c.tiff", width = 7, height = 4, units = 'in', res = 300) plot(Figure_8c+theme_tufte() + theme(axis.line = element_line(size = 1, colour = "black")) + theme(legend.title = element_text(face = "bold")) + theme(legend.text = element_text(face = "italic"))) + theme(axis.text.x = element_blank()) + xlab(expression(bold("Time points (days)"))) + ylab(expression(bold("No. of surviving flies (Age 22 and 29 days)"))) dev.off() ``` Figure 8d: survival at different time points- differences between Pupal_age -Regardless of treatment ```{r } data_8d<- read.csv("Figure 8d.csv") head(data_8d) data_8d$Pupal_age<- as.factor(data_8d$Pupal_age) data_8d$Time_point<- as.factor(data_8d$Time_point) Figure_8d<-ggplot(data_8d,aes(x=Time_point,y=surv_flies,fill=Time_point))+ geom_boxplot(alpha=0.3) + labs(fill = "Time points(days)") + facet_wrap(~Pupal_age) +theme_bw(base_size = 16) Figure_8d tiff("Figure 8d.tiff", width = 7, height = 4, units = 'in', compression = 'lzw',res = 300) plot(Figure_8d+theme_tufte() + theme(axis.line = element_line(size = 1, colour = "black")) + theme(legend.title = element_text(face = "bold")) + theme(legend.text = element_text(face = "italic"))) + theme(axis.text.x = element_blank()) + xlab(expression(bold("Time points (days)"))) + ylab(expression(bold("No. of surviving flies (Age 22 and 29 days) "))) dev.off() ``` Figure 8: Survival at point in time(####Significant Values)-Binomial method Figure 8a:survival point in time -22 days ```{r } data_4<- read.csv("Figure 8a_22.csv") head(data_4) boxplot(data_4$surv15 ~ data_4$Treatments, ylab = "Survival rate after 15 days_22") boxplot(data_4$surv30 ~ data_4$Treatments, ylab = "Survival rate after 30days_22") boxplot(data_4$surv60 ~ data_4$Treatments, ylab = "Survival rate after 60 days_22") ## survival: binomial model survival rate 15 days(difference in treatments) fm4_1 <- glmer(cbind(surv15,n - surv15) ~ Treatment +(1|rep), family = binomial, data = data_4) summary(fm4_1) ## survival: binomial model survival rate 30 days(difference in treatments) fm4_2 <- glmer(cbind(surv30,n - surv30) ~ Treatment +(1|rep), family = binomial, data = data_4) summary(fm4_2) ## survival: binomial model survival rate 60 days fm4_3<- glmer(cbind(surv60,n - surv60) ~ Treatment +(1|rep), family = binomial, data = data_4) summary(fm4_3) ``` Figure 8a:survival point in time -29 days ```{r } data_5<- read.csv("Figure 8a_29.csv") head(data_5) boxplot(data_5$surv15/data_5$n ~ data_5$Treatments, ylab = "Survival rate after 15 days_29") boxplot(data_5$surv30/data_5$n ~ data_5$Treatments, ylab = "Survival rate after 30 days_29") boxplot(data_5$surv60/data_5$n ~ data_5$Treatments, ylab = "Survival rate after 60 days_29") ### survival: binomial model survival rate 15 days (difference in treatments) fm5_1 <- glmer(cbind(surv15,n - surv15) ~ Treatment +(1|rep), family = binomial, data = data_5) summary(fm5_1) ### survival: binomial model survival rate 30 days(difference in treatments) fm5_2 <- glmer(cbind(surv30,n - surv30) ~ Treatment +(1|rep), family = binomial, data = data_5) summary(fm5_2) ### survival: binomial model survival rate 60 days(difference in treatments) fm5_3 <- glmer(cbind(surv60,n - surv60) ~ Treatment +(1|rep), family = binomial, data = data_5) summary(fm5_3) ``` Survival at point in time-Combined data(22 and 29 days) -Figure 8c and 8d ###significance ```{r } data_4<- read.csv("Figure 8c_8d_significance.csv") str(data_4) summary(data_4) head(data_4) #### Individual boxplots for Figure 8c and 8d Survival_15days<-data_4$surv15 boxplot(Survival_15days ~ data_4$Treatment, ylab = "Survival rate after 15 days (combined data)") boxplot(Survival_15days ~ data_4$Pupal_age, ylab = "Survival rate after 15 days") #30 boxplot(data_4$surv30/data_4$n ~ data_4$Treatment, ylab = "Survival rate after 30 days (combined data)") boxplot(data_4$surv30/data_4$n ~ data_4$Pupal_age, ylab = "Survival rate after 30 days") #60 boxplot(data_4$surv60/data_4$n ~ data_4$Treatment, ylab = "Survival rate after 60 days(combined data)") boxplot(data_4$surv60/data_4$n ~ data_4$Pupal_age, ylab = "Survival rate after 60 days") #### significance (boxplots above) for Figure 8c and 8d ########################## survival: binomial model survival rate 15 days ###Treatments fm4_1 <- glmer(cbind(surv15,n - surv15) ~ Treatment +(1|rep), family = binomial, data = data_4) summary(fm4_1) ###Pupal age fm4_1 <- glmer(cbind(surv15,n - surv15) ~ Pupal_age +(1|rep), family = binomial, data = data_4) summary(fm4_1) ########################### survival: binomial model survival rate 30 days ###Treatments fm4_2 <- glmer(cbind(surv30,n - surv30) ~ Treatment +(1|rep), family = binomial, data = data_4) summary(fm4_2) ###Pupal age fm4_2 <- glmer(cbind(surv30,n - surv30) ~ Pupal_age +(1|rep), family = binomial, data = data_4) summary(fm4_1) ########################## survival: binomial model survival rate 60 days ###Treatments fm4_3<- glmer(cbind(surv60,n - surv60) ~ Treatment +(1|rep), family = binomial, data = data_4) summary(fm4_3) ###Pupal age fm4_3<- glmer(cbind(surv60,n - surv60) ~ Pupal_age +(1|rep), family = binomial, data = data_4) summary(fm4_3) ``` MODELS ON THE IMPACT OF SHOCK ON THE EMERGENCE RATE OF 22 AND 29 DAY OLD PUPAE (COMBINED DATA) Figure 9a ```{r} tab <- read.csv("Figure 9a.csv") head(tab) str(tab) tab$pcemerg <- tab$emerged / (tab$emerged+tab$unemerged) boxplot(tab$pcemerg ~ tab$Treatments, xlab ="Treatments", ylab = "Emergence rate") plot(tab$pcemerg~tab$RH._Max)#* plot(tab$pcemerg~tab$RH._mean) plot(tab$pcemerg~tab$Temp_mean)#* plot(tab$pcemerg~tab$Temp_Max) #Scatter plots at threshold 5-Max par(mfrow = c(2,2)) plot(tab$pcemerg~tab$Events._5max) plot(tab$pcemerg~tab$Duration.ms._5max) plot(tab$pcemerg~tab$scalar_max_5max) plot(tab$pcemerg~tab$scalar_mean_5max) plot(tab$pcemerg~tab$changescalar_max_5max) plot(tab$pcemerg~tab$changescalar_mean_5max)#* plot(tab$pcemerg~tab$Changevector_max_5max) plot(tab$pcemerg~tab$Changevector_mean_5max) plot(tab$pcemerg~tab$Angle_max_5max) plot(tab$pcemerg~tab$Angle_mean_5max) plot(tab$pcemerg~tab$Hz_max_5max) plot(tab$pcemerg~tab$Hz_mean_5max) ``` #Scatter plots at threshold 5-Mean ```{r} par(mfrow = c(2,2)) plot(tab$pcemerg~tab$Duration.ms._5mean)#* plot(tab$pcemerg~tab$scalar_max_5mean)#* plot(tab$pcemerg~tab$scalar_mean_5mean) plot(tab$pcemerg~tab$changescalar_max_5mean) plot(tab$pcemerg~tab$changescalar_mean_5mean) plot(tab$pcemerg~tab$Changevector_max_5mean) plot(tab$pcemerg~tab$Changevector_mean_5mean) plot(tab$pcemerg~tab$Angle_max_5mean) plot(tab$pcemerg~tab$Angle_mean_5mean) plot(tab$pcemerg~tab$Hz_max_5mean) plot(tab$pcemerg~tab$Hz_mean_5mean) ``` #Scatter plots at threshold 10-Max ```{r} par(mfrow = c(2,2)) plot(tab$pcemerg~tab$Events._mean10) plot(tab$pcemerg~tab$Duration.ms._10max)#* plot(tab$pcemerg~tab$scalar_max_10max) plot(tab$pcemerg~tab$scalar_mean_10max) plot(tab$pcemerg~tab$changescalar_max_10max) plot(tab$pcemerg~tab$changescalar_mean_10max)#* plot(tab$pcemerg~tab$Changevector_max_10max) plot(tab$pcemerg~tab$Changevector_mean_10max) plot(tab$pcemerg~tab$Angle_max_10max) plot(tab$pcemerg~tab$Angle_mean_10max)#* plot(tab$pcemerg~tab$Hz_max_10max) plot(tab$pcemerg~tab$Hz_mean_10max)#* ``` #Scatter plots at threshold 10-Mean ```{r} par(mfrow = c(2,2)) plot(tab$pcemerg~tab$Duration.ms._10mean) plot(tab$pcemerg~tab$scalar_max_10mean) plot(tab$pcemerg~tab$scalar_mean_10mean)#* plot(tab$pcemerg~tab$changescalar_max_10mean) plot(tab$pcemerg~tab$changescalar_mean_10mean) plot(tab$pcemerg~tab$Changevector_max_10mean) plot(tab$pcemerg~tab$Changevector_mean_10mean) plot(tab$pcemerg~tab$Angle_max_10mean) plot(tab$pcemerg~tab$Angle_mean_10mean) plot(tab$pcemerg~tab$Hz_max_10mean) plot(tab$pcemerg~tab$Hz_mean_10mean) ``` #Scatter plots at threshold 15-Max ```{r} par(mfrow = c(2,2)) plot(tab$pcemerg~tab$Events_15mean) plot(tab$pcemerg~tab$Duration.ms._15max) plot(tab$pcemerg~tab$scalar_max_15max) plot(tab$pcemerg~tab$scalar_mean_15max) plot(tab$pcemerg~tab$changescalar_max_15max) plot(tab$pcemerg~tab$changescalar_mean_15max)#* cor.test(tab$pcemerg,tab$changescalar_mean_15max) plot(tab$pcemerg~tab$Changevector_max_15max) plot(tab$pcemerg~tab$Changevector_mean_15max)# cor.test(tab$pcemerg,tab$Changevector_mean_15max) plot(tab$pcemerg~tab$Angle_max_15max) plot(tab$pcemerg~tab$Angle_mean_15max)#* plot(tab$pcemerg~tab$Hz_max_15max) plot(tab$pcemerg~tab$Hz_mean_15max)#* ``` #Scatter plots at threshold 15-Mean ```{r} par(mfrow = c(2,2)) plot(tab$pcemerg~tab$Duration.ms._15mean) plot(tab$pcemerg~tab$scalar_max_15mean) plot(tab$pcemerg~tab$scalar_mean_15mean)#* plot(tab$pcemerg~tab$changescalar_max_15mean) plot(tab$pcemerg~tab$changescalar_mean_15mean)#* plot(tab$pcemerg~tab$Changevector_max_15mean) #* plot(tab$pcemerg~tab$Changevector_mean_15mean) plot(tab$pcemerg~tab$Angle_max_15mean) plot(tab$pcemerg~tab$Angle_mean_15mean) plot(tab$pcemerg~tab$Hz_max_15mean) plot(tab$pcemerg~tab$Hz_mean_15mean) ``` #Scatter plots at threshold 20-Max ```{r} par(mfrow = c(2,2)) plot(tab$pcemerg~tab$Events_20max) plot(tab$pcemerg~tab$Duration.ms._20max) plot(tab$pcemerg~tab$scalar_max_20max) plot(tab$pcemerg~tab$scalar_mean_20max)#* plot(tab$pcemerg~tab$changescalar_max_20max) plot(tab$pcemerg~tab$changescalar_mean_20max) plot(tab$pcemerg~tab$Changevector_max_20max) plot(tab$pcemerg~tab$Changevector_mean_20max) plot(tab$pcemerg~tab$Angle_max_20max) plot(tab$pcemerg~tab$Angle_mean_20max) plot(tab$pcemerg~tab$Hz_max_20max) plot(tab$pcemerg~tab$Hz_mean_20max) ``` #Scatter plots at threshold 20-Mean ```{r} par(mfrow = c(2,2)) plot(tab$pcemerg~tab$Duration.ms._20mean) plot(tab$pcemerg~tab$scalar_max_20mean) plot(tab$pcemerg~tab$scalar_mean_20mean) plot(tab$pcemerg~tab$changescalar_max_20mean) plot(tab$pcemerg~tab$changescalar_mean_20mean)#* plot(tab$pcemerg~tab$Changevector_max_20mean) plot(tab$pcemerg~tab$Changevector_mean_20mean) plot(tab$pcemerg~tab$Angle_max_20mean) plot(tab$pcemerg~tab$Angle_mean_20mean) plot(tab$pcemerg~tab$Hz_max_20mean) plot(tab$pcemerg~tab$Hz_mean_20mean) ``` ##Models of impact of shock on emergence rate of transported pupae ```{r} #models threshold 5 fm1 <- glmer(cbind(emerged,unemerged) ~ Irradiation + RH._Max + Temp_mean + (1|Replicate), family = binomial, data = tab) fm2 <- glmer(cbind(emerged,unemerged) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + scalar_max_5mean + (1|Replicate), family = binomial, data = tab) fm3 <- glmer(cbind(emerged,unemerged) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Duration.ms._5mean +(1|Replicate), family = binomial, data = tab) fm4 <- glmer(cbind(emerged,unemerged) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + (1|Replicate), family = binomial, data = tab) fm5 <- glmer(cbind(emerged,unemerged) ~ Irradiation + RH._Max + Temp_mean + scalar_max_5mean + (1|Replicate), family = binomial, data = tab) fm6 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + changescalar_mean_5max + scalar_max_5mean + (1|Replicate), family = binomial, data = tab) fm7 <- glmer(cbind(emerged,unemerged) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + scalar_max_5mean + (1|Replicate), family = binomial, data = tab) fm9 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + changescalar_mean_5max + (1|Replicate), family = binomial, data = tab) fm10 <- glmer(cbind(emerged,unemerged) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Duration.ms._5mean +(1|Replicate), family = binomial, data = tab) fm11 <- glmer(cbind(emerged,unemerged) ~ Irradiation + RH._Max + Temp_mean + (1|Replicate), family = binomial, data = tab) fm12 <- glmer(cbind(emerged,unemerged) ~ Irradiation +Temp_mean + Age +(1|Replicate), family = binomial, data = tab) fm13 <- glmer(cbind(emerged,unemerged) ~ Irradiation +RH._Max + Age +(1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm9,fm10,fm11,fm12,fm13) summary(fm6) fm11a <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + Duration.ms._10max + changescalar_mean_10max+Angle_mean_10max+ (1|Replicate), family = binomial, data = tab) fm12b <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean +changescalar_mean_10max+ scalar_mean_10mean +(1|Replicate), family = binomial, data = tab) fm13c <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + Duration.ms._10max + changescalar_mean_10max+ (1|Replicate), family = binomial, data = tab) fm14 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Duration.ms._10max + scalar_mean_10mean +(1|Replicate), family = binomial, data = tab) fm15 <- glmer(cbind(emerged,unemerged) ~ Irradiation + changescalar_mean_10max+ scalar_mean_10mean +(1|Replicate), family = binomial, data = tab) fm16 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + Duration.ms._10max + Angle_mean_10max+ (1|Replicate), family = binomial, data = tab) fm17 <- glmer(cbind(emerged,unemerged) ~ Irradiation + scalar_mean_10mean +Angle_mean_10max+ (1|Replicate), family = binomial, data = tab) fm18 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Age + changescalar_mean_10max+ scalar_mean_10mean +(1|Replicate), family = binomial, data = tab) fm19 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Duration.ms._10max + Age + (1|Replicate), family = binomial, data = tab) fm14a <- glmer(cbind(emerged,unemerged) ~ Irradiation + Duration.ms._10max + (1|Replicate), family = binomial, data = tab) fm14b <- glmer(cbind(emerged,unemerged) ~ Irradiation + Duration.ms._10max + changescalar_mean_10max+ Age +(1|Replicate), family = binomial, data = tab) fm14c <- glmer(cbind(emerged,unemerged) ~ Irradiation + changescalar_mean_10max+ (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm9,fm10,fm11,fm12,fm13,fm11a,fm12b,fm13c,fm14,fm14a,fm14b,fm14c,fm15,fm16,fm17,fm18,fm19) summary(fm6) fm21 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + changescalar_mean_15max + Angle_mean_15max+ changescalar_mean_15mean+Changevector_max_15mean+ (1|Replicate), family = binomial, data = tab) fm22 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + changescalar_mean_15max + Changevector_mean_15max+ Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) fm23 <- glmer(cbind(emerged,unemerged) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15max+ Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) fm24 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean +changescalar_mean_15max + changescalar_mean_15mean+ (1|Replicate), family = binomial, data = tab) fm25 <- glmer(cbind(emerged,unemerged) ~ Irradiation + changescalar_mean_15max + Age+ Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) fm26 <- glmer(cbind(emerged,unemerged) ~ Irradiation + changescalar_mean_15max + scalar_mean_15mean + (1|Replicate), family = binomial, data = tab) fm27 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Changevector_mean_15max+Angle_mean_15max+scalar_mean_15mean +Changevector_max_15mean+ (1|Replicate), family = binomial, data = tab) fm28 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Changevector_mean_15max+(1|Replicate), family = binomial, data = tab) fm29 <- glmer(cbind(emerged,unemerged) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15max+ (1|Replicate), family = binomial, data = tab) fm30 <- glmer(cbind(emerged,unemerged) ~ Irradiation + scalar_mean_15mean + Age +(1|Replicate), family = binomial, data = tab) fm21a <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + Changevector_mean_15max+ Angle_mean_15max+changescalar_mean_15mean+ (1|Replicate), family = binomial, data = tab) fm21b <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + changescalar_mean_15max + scalar_mean_15mean +Changevector_max_15mean+ (1|Replicate), family = binomial, data = tab) fm21c <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + changescalar_mean_15max + Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) fm21d <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean +changescalar_mean_15mean+Changevector_max_15mean+ (1|Replicate), family = binomial, data = tab) fm21e <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean +changescalar_mean_15mean+Changevector_max_15mean+ Age +(1|Replicate), family = binomial, data = tab) fm27a <- glmer(cbind(emerged,unemerged) ~ Irradiation + scalar_mean_15mean +Changevector_max_15mean+ (1|Replicate), family = binomial, data = tab) fm27b <- glmer(cbind(emerged,unemerged) ~ Irradiation + Changevector_mean_15max+Angle_mean_15max+scalar_mean_15mean + (1|Replicate), family = binomial, data = tab) fm29a <- glmer(cbind(emerged,unemerged) ~ Irradiation + Changevector_mean_15max+ (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm9,fm10,fm11,fm12,fm13,fm11a,fm12b,fm13c,fm14,fm14a,fm14b,fm14c,fm15,fm16,fm17,fm18,fm19,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm29a,fm30,fm21a,fm21b,fm21c,fm21d,fm21e,fm27a,fm27b) summary(fm29) fm31 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + scalar_mean_20max + changescalar_mean_20mean+ (1|Replicate), family = binomial, data = tab) fm32 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + changescalar_mean_20mean+ (1|Replicate), family = binomial, data = tab) fm31a <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + scalar_mean_20max + (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm9,fm10,fm11,fm12,fm13,fm11a,fm12b,fm13c,fm14,fm14a,fm14b,fm14c,fm15,fm16,fm17,fm18,fm19,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm29a,fm30,fm21a,fm21b,fm21c,fm21d,fm21e,fm27a,fm27b,fm31,fm31a,fm32) summary(fm29) #combination of thresholds fm41 <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + Duration.ms._10max + scalar_max_5mean + Changevector_mean_15max+(1|Replicate), family = binomial, data = tab) fm42 <- glmer(cbind(emerged,unemerged) ~ Irradiation + scalar_max_5mean + Changevector_mean_15max+ (1|Replicate), family = binomial, data = tab) fm41a <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + Duration.ms._10max + changescalar_mean_5max + (1|Replicate), family = binomial, data = tab) fm41b <- glmer(cbind(emerged,unemerged) ~ Irradiation + Temp_mean + Duration.ms._10max + scalar_max_5mean + (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm9,fm10,fm11,fm12,fm13,fm11a,fm12b,fm13c,fm14,fm14a,fm14b,fm14c,fm15,fm16,fm17,fm18,fm19,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm29a,fm30,fm21a,fm21b,fm21c,fm21d,fm21e,fm27a,fm27b,fm31,fm31a,fm32,fm41,fm42,fm41a,fm41b) summary(fm29) #the best model remains as fm29 (s12 fig) ##Fig9a head(tab) str(tab) summary(fm29) plot((emerged / unemerged) ~ fitted(fm29), data = tab) abline(lm((emerged / unemerged) ~ fitted(fm29), data = tab), col = "red") cor.test(tab$emerged/tab$unemerged,fitted(fm29)) summary(lm(fitted(fm29)~(tab$emerged/tab$unemerged)))$r.squared #####Correlation of the factors in the best model(fm29) cor.test(tab$changescalar_mean_15max,tab$Changevector_mean_15max) ####Conclusion: significantly correlated. Settled on Changevector_mean_15max ``` MODELS ON THE IMPACT OF SHOCK ON THE flight propensity OF 22 AND 29 DAY OLD PUPAE (COMBINED DATA) Figure 9b:Flight propensity ```{r} tab <- read.csv("Figure 9b.csv") head(tab) str(tab) tab$pcflight <- tab$out / (tab$out+tab$in.) boxplot(tab$pcflight~ tab$Treatments, xlab ="Treatments", ylab = "Flight propensity") plot(tab$pcflight~tab$RH._Max)#* plot(tab$pcflight~tab$RH._mean) plot(tab$pcflight~tab$Temp_mean)#* cor.test(tab$pcflight,tab$Temp_mean) plot(tab$pcflight~tab$Temp_Max) par(mfrow = c(2,2)) plot(tab$pcflight~tab$Events._5max) ``` #Scatter plots at threshold 5-Max ```{r } par(mfrow = c(2,2)) plot(tab$pcflight~tab$Duration.ms._5max)#* plot(tab$pcflight~tab$scalar_max_5max) plot(tab$pcflight~tab$scalar_mean_5max)#* plot(tab$pcflight~tab$changescalar_max_5max) plot(tab$pcflight~tab$changescalar_mean_5max)*# plot(tab$pcflight~tab$Changevector_max_5max) plot(tab$pcflight~tab$Changevector_mean_5max) plot(tab$pcflight~tab$Angle_max_5max)#* plot(tab$pcflight~tab$Angle_mean_5max) plot(tab$pcflight~tab$Hz_max_5max)#* plot(tab$pcflight~tab$Hz_mean_5max) ``` #Scatter plots at threshold 5-Mean ```{r } par(mfrow = c(2,2)) plot(tab$pcflight~tab$Duration.ms._5mean)#* plot(tab$pcflight~tab$scalar_max_5mean) plot(tab$pcflight~tab$scalar_mean_5mean) plot(tab$pcflight~tab$changescalar_max_5mean) plot(tab$pcflight~tab$changescalar_mean_5mean) plot(tab$pcflight~tab$Changevector_max_5mean) plot(tab$pcflight~tab$Changevector_mean_5mean) plot(tab$pcflight~tab$Angle_max_5mean) plot(tab$pcflight~tab$Angle_mean_5mean) plot(tab$pcflight~tab$Hz_max_5mean) plot(tab$pcflight~tab$Hz_mean_5mean) ``` #Scatter plots at threshold 10-Max ```{r } par(mfrow = c(2,2)) plot(tab$pcflight~tab$Events_10max) plot(tab$pcflight~tab$Duration.ms._10max) plot(tab$pcflight~tab$scalar_max_10max) plot(tab$pcflight~tab$scalar_mean_10max)#* plot(tab$pcflight~tab$changescalar_max_10max) plot(tab$pcflight~tab$changescalar_mean_10max) plot(tab$pcflight~tab$Changevector_max_10max) plot(tab$pcflight~tab$Changevector_mean_10max)#* plot(tab$pcflight~tab$Angle_max_10max) plot(tab$pcflight~tab$Angle_mean_10max) plot(tab$pcflight~tab$Hz_max_10max) plot(tab$pcflight~tab$Hz_mean_10max)#* ``` #Scatter plots at threshold 10-Mean ```{r } par(mfrow = c(2,2)) plot(tab$pcflight~tab$Duration.ms._10mean)#* plot(tab$pcflight~tab$scalar_max_10mean)#* plot(tab$pcflight~tab$scalar_mean_10mean) plot(tab$pcflight~tab$changescalar_max_10mean) plot(tab$pcflight~tab$changescalar_mean_10mean)#* plot(tab$pcflight~tab$Changevector_max_10mean) plot(tab$pcflight~tab$Changevector_mean_10mean)#* plot(tab$pcflight~tab$Angle_max_10mean) plot(tab$pcflight~tab$Angle_mean_10mean) plot(tab$pcflight~tab$Hz_max_10mean) plot(tab$pcflight~tab$Hz_mean_10mean) ``` #Scatter plots at threshold 15-Max ```{r } par(mfrow = c(2,2)) plot(tab$pcflight~tab$Events_15max) plot(tab$pcflight~tab$Duration.ms._15max) plot(tab$pcflight~tab$scalar_max_15max) plot(tab$pcflight~tab$scalar_mean_15max) plot(tab$pcflight~tab$changescalar_max_15max) plot(tab$pcflight~tab$changescalar_mean_15max)#* plot(tab$pcflight~tab$Changevector_max_15max) plot(tab$pcflight~tab$Changevector_mean_15max)#* plot(tab$pcflight~tab$Angle_max_15max) plot(tab$pcflight~tab$Angle_mean_15max)#* cor.test(tab$pcflight,tab$Angle_mean_15max) plot(tab$pcflight~tab$Hz_max_15max) plot(tab$pcflight~tab$Hz_mean_15max)#* ``` #Scatter plots at threshold 15-Max-mean ```{r } par(mfrow = c(2,2)) plot(tab$pcflight~tab$Duration.ms._15mean)#* plot(tab$pcflight~tab$scalar_max_15mean) plot(tab$pcflight~tab$scalar_mean_15mean)#* plot(tab$pcflight~tab$changescalar_max_15mean) plot(tab$pcflight~tab$changescalar_mean_15mean)#* plot(tab$pcflight~tab$Changevector_max_15mean) plot(tab$pcflight~tab$Changevector_mean_15mean)#* plot(tab$pcflight~tab$Angle_max_15mean) plot(tab$pcflight~tab$Angle_mean_15mean) plot(tab$pcflight~tab$Hz_max_15mean) plot(tab$pcflight~tab$Hz_mean_15mean) ``` #Scatter plots at threshold 20-Max ```{r } par(mfrow = c(2,2)) plot(tab$pcflight~tab$Events_20max) plot(tab$pcflight~tab$Duration.ms._20max)#* plot(tab$pcflight~tab$scalar_max_20max) plot(tab$pcflight~tab$scalar_mean_20max) plot(tab$pcflight~tab$changescalar_max_20max)#* plot(tab$pcflight~tab$changescalar_mean_20max) plot(tab$pcflight~tab$Changevector_max_20max) plot(tab$pcflight~tab$Changevector_mean_20max) plot(tab$pcflight~tab$Angle_max_20max) plot(tab$pcflight~tab$Angle_mean_20max)#* plot(tab$pcflight~tab$Hz_max_20max) plot(tab$pcflight~tab$Hz_mean_20max) ``` #Scatter plots at threshold 20-Mean ```{r } par(mfrow = c(2,2)) plot(tab$pcflight~tab$Duration.ms._20mean) plot(tab$pcflight~tab$scalar_max_20mean) plot(tab$pcflight~tab$scalar_mean_20mean) plot(tab$pcflight~tab$changescalar_max_20mean)#* plot(tab$pcflight~tab$changescalar_mean_20mean) plot(tab$pcflight~tab$Changevector_max_20mean) #* plot(tab$pcflight~tab$Changevector_mean_20mean) plot(tab$pcflight~tab$Angle_max_20mean) plot(tab$pcflight~tab$Angle_mean_20mean)#* plot(tab$pcflight~tab$Hz_max_20mean) plot(tab$pcflight~tab$Hz_mean_20mean) ``` #Models of impact of transportation on the flight propensity ```{r } factor(tab$Age) #####Caroline #models threshold 5 fm1 <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + (1|Replicate), family = binomial, data = tab) fm2 <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Changevector_mean_5max + (1|Replicate), family = binomial, data = tab) fm3 <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Duration.ms._5mean +(1|Replicate), family = binomial, data = tab) fm4 <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max +scalar_mean_5max + (1|Replicate), family = binomial, data = tab) fm5 <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Duration.ms._5mean + Changevector_mean_5max + (1|Replicate), family = binomial, data = tab) fm6 <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Angle_mean_5max + Duration.ms._5mean + (1|Replicate), family = binomial, data = tab) fm7 <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Changevector_mean_5max +Duration.ms._5mean +(1|Replicate), family = binomial, data = tab) fm8 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + changescalar_mean_5max + Duration.ms._5max +Angle_mean_5max + (1|Replicate), family = binomial, data = tab) fm1a<- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + Duration.ms._5max +scalar_mean_5max + (1|Replicate), family = binomial, data = tab) fm1b <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + scalar_mean_5max +changescalar_mean_5mean +Changevector_mean_5max+(1|Replicate), family = binomial, data = tab) fm1c <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + scalar_mean_5max +changescalar_mean_5max +Changevector_mean_5mean + (1|Replicate), family = binomial, data = tab) fm1d <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + scalar_mean_5max +changescalar_mean_5mean +Changevector_mean_5mean +(1|Replicate), family = binomial, data = tab) fm1e <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + scalar_mean_5max +(1|Replicate), family = binomial, data = tab) fm1f <- glmer(cbind(out,in.) ~ Irradiation + RH._Max + Temp_mean + Angle_mean_5max +(1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm1c,fm1d,fm1e,fm1f) summary(fm1) ##models for threshold 10 fm11 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + Duration.ms._10max + changescalar_mean_10max+Angle_mean_10max+ (1|Replicate), family = binomial, data = tab) fm12 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + Duration.ms._10max + changescalar_mean_10max+ Changevector_mean_10mean + (1|Replicate), family = binomial, data = tab) fm13 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + Duration.ms._10max + changescalar_mean_10max+ Changevector_mean_10max + (1|Replicate), family = binomial, data = tab) fm14 <- glmer(cbind(out,in.) ~ Irradiation + Duration.ms._10max + changescalar_mean_10max+Changevector_mean_10max + (1|Replicate), family = binomial, data = tab) fm15 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean +Duration.ms._10mean + changescalar_mean_10max+ (1|Replicate), family = binomial, data = tab) fm11a <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + Duration.ms._10max + Changevector_mean_10mean +(1|Replicate), family = binomial, data = tab) fm11b <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + Duration.ms._10mean + changescalar_mean_10max+scalar_max_10mean +(1|Replicate), family = binomial, data = tab) fm11c <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + Duration.ms._10mean + Changevector_mean_10mean +scalar_max_10mean +(1|Replicate), family = binomial, data = tab) fm11d <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean +Duration.ms._10mean +Changevector_mean_10mean + (1|Replicate), family = binomial, data = tab) fm12a <- glmer(cbind(in.,out) ~ Temp_mean + Angle_mean_10max+ (1|Replicate), family = binomial, data = tab) fm12b <- glmer(cbind(in.,out) ~ Temp_mean + Duration.ms._10max+ (1|Replicate), family = binomial, data = tab) fm12c <- glmer(cbind(in.,out) ~ Temp_mean + Angle_mean_10max+ Duration.ms._10max+(1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm1c,fm1d,fm1e,fm1f,fm12,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm12a,fm12b,fm12c) summary(fm12b) # ##threshold 15 fm21 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + changescalar_mean_15max + scalar_mean_15mean + Duration.ms._15mean +(1|Replicate), family = binomial, data = tab) fm22 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + changescalar_mean_15max + Changevector_mean_15mean +(1|Replicate), family = binomial, data = tab) fm23 <- glmer(cbind(out,in.) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15max+scalar_mean_15mean + (1|Replicate), family = binomial, data = tab) fm24 <- glmer(cbind(out,in.) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15max+ Angle_mean_15max+Duration.ms._15mean +(1|Replicate), family = binomial, data = tab) fm25 <- glmer(cbind(out,in.) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15max+ Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) fm26 <- glmer(cbind(out,in.) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15max+scalar_mean_15mean + Duration.ms._15mean +(1|Replicate), family = binomial, data = tab) fm27 <- glmer(cbind(out,in.) ~ Irradiation + Changevector_mean_15max+scalar_mean_15mean + (1|Replicate), family = binomial, data = tab) fm28 <- glmer(cbind(out,in.) ~ Irradiation + Changevector_mean_15max+ changescalar_mean_15mean +(1|Replicate), family = binomial, data = tab) fm29 <- glmer(cbind(out,in.) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15max+(1|Replicate), family = binomial, data = tab) fm30 <- glmer(cbind(out,in.) ~ Irradiation +Temp_mean +Angle_mean_15max + Changevector_mean_15mean +(1|Replicate), family = binomial, data = tab) fm30a <-glmer(cbind(out,in.) ~ Irradiation +Temp_mean + Duration.ms._15mean +changescalar_mean_15mean + Changevector_mean_15mean +(1|Replicate), family = binomial, data = tab) fm29a<- glmer(cbind(out,in.) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15max+ Duration.ms._15mean +scalar_mean_15mean +(1|Replicate), family = binomial, data = tab) fm29b <- glmer(cbind(in.,out) ~ Age +Temp_mean+ Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) fm29c <- glmer(cbind(in.,out) ~ Temp_mean + Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) fm29d <- glmer(cbind(in.,out) ~ Age + Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm1c,fm1d,fm1e,fm1f,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm12a,fm12b,fm12c,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm30,fm30a,fm29a,fm29b,fm29c,fm29d) summary(fm29b) ##Threshold 20 fm31 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + Duration.ms._20max + changescalar_mean_20max + Angle_mean_20max + (1|Replicate), family = binomial, data = tab) fm32 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + changescalar_mean_20mean+ Angle_mean_20mean +(1|Replicate), family = binomial, data = tab) fm31a <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + Duration.ms._20max + changescalar_mean_20max + Angle_mean_20mean + (1|Replicate), family = binomial, data = tab) fm32a <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + changescalar_mean_20max +Angle_mean_20max +(1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm1c,fm1d,fm1e,fm1f,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm12a,fm12b,fm12c,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm30,fm30a,fm29a,fm29b,fm29c,fm29d,fm31,fm31a,fm32,fm32a) summary(fm29b) #combination of thresholds fm41 <- glmer(cbind(out,in.) ~ Irradiation + Temp_mean + RH._Max + changescalar_mean_10max + Angle_mean_15max + Changevector_mean_15mean +(1|Replicate), family = binomial, data = tab) fm42 <- glmer(cbind(out,in.) ~ Irradiation +Temp_mean + RH._Max + changescalar_mean_20max +Angle_mean_20max + Duration.ms._10mean +(1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm30,fm30a,fm29a,fm29b,fm29c,fm29d,fm31,fm32,fm31a,fm32a,fm41,fm42) #the best model remains as fm29b ##Figure 9b head(tab) str(tab) summary(fm29b) plot((out / in.) ~ fitted(fm29b), data = tab) FIT <- lm(tab$pcflight ~ fitted(fm29b)) abline(reg = FIT) cor.test(tab$pcflight,fitted(fm29b)) summary(lm(fitted(fm29b)~(tab$out/tab$in.)))$r.squared #any(is.na(tab)) ## Independent variables not correlated ``` MODELS ON THE IMPACT OF SHOCK ON THE Mating abilityOF 22 AND 29 DAY OLD PUPAE (COMBINED DATA) Figure 9c: Mating ability ```{r} tab <- read.csv("Figure 9c.csv") head(tab) summary(tab) str(tab) tab$pcmating <- tab$pairs_formed / (tab$pairs_formed+tab$unformed_pairs) boxplot(tab$pcmating ~ tab$Treatments, xlab ="Treatments", ylab = "mating ability") #####SCATTER PLOTS plot(tab$pcmating~tab$RH._Max)#* cor.test(tab$pcmating,tab$RH._Max) plot(tab$pcmating~tab$RH._mean) plot(tab$pcmating~tab$Temp_mean)#* cor.test(tab$pcmating,tab$Temp_mean) plot(tab$pcmating~tab$Temp_Max) #Scatter plots at threshold 5-Max par(mfrow = c(2,2)) plot(tab$pcmating~tab$Events._5max) plot(tab$pcmating~tab$Duration.ms._5max) plot(tab$pcmating~tab$scalar_max_5max) plot(tab$pcmating~tab$scalar_mean_5max) plot(tab$pcmating~tab$changescalar_max_5max) plot(tab$pcmating~tab$changescalar_mean_5max)#* cor.test(tab$pcmating,tab$changescalar_mean_5max) plot(tab$pcmating~tab$Changevector_max_5max) plot(tab$pcmating~tab$Changevector_mean_5max)#* cor.test(tab$pcmating,tab$Changevector_mean_5max) plot(tab$pcmating~tab$Angle_max_5max) plot(tab$pcmating~tab$Angle_mean_5max) plot(tab$pcmating~tab$Hz_max_5max) plot(tab$pcmating~tab$Hz_mean_5max) ``` #Scatter plots at threshold 5-Mean ```{r} par(mfrow = c(2,2)) plot(tab$pcmating~tab$Duration.ms._5mean)#* plot(tab$pcmating~tab$scalar_max_5mean) plot(tab$pcmating~tab$scalar_mean_5mean) plot(tab$pcmating~tab$changescalar_max_5mean) plot(tab$pcmating~tab$changescalar_mean_5mean) plot(tab$pcmating~tab$Changevector_max_5mean) plot(tab$pcmating~tab$Changevector_mean_5mean) plot(tab$pcmating~tab$Angle_max_5mean) plot(tab$pcmating~tab$Angle_mean_5mean) plot(tab$pcmating~tab$Hz_max_5mean) plot(tab$pcmating~tab$Hz_mean_5mean) ``` #Scatter plots at threshold 10-Max ```{r} par(mfrow = c(2,2)) plot(tab$pcmating~tab$Events_10max)#* plot(tab$pcmating~tab$Duration.ms._10max) plot(tab$pcmating~tab$scalar_max_10max) plot(tab$pcmating~tab$scalar_mean_10max) plot(tab$pcmating~tab$changescalar_max_10max)#* plot(tab$pcmating~tab$changescalar_mean_10max) plot(tab$pcmating~tab$Changevector_max_10max) plot(tab$pcmating~tab$Changevector_mean_10max) plot(tab$pcmating~tab$Angle_max_10max)#* plot(tab$pcmating~tab$Angle_mean_10max) plot(tab$pcmating~tab$Hz_max_10max) plot(tab$pcmating~tab$Hz_mean_10max) ``` #Scatter plots at threshold 10-Mean ```{r} par(mfrow = c(2,2)) plot(tab$pcmating~tab$Duration.ms._10mean) plot(tab$pcmating~tab$scalar_max_10mean) plot(tab$pcmating~tab$scalar_mean_10mean) plot(tab$pcmating~tab$changescalar_max_10mean) plot(tab$pcmating~tab$changescalar_mean_10mean) plot(tab$pcmating~tab$Changevector_max_10mean) plot(tab$pcmating~tab$Changevector_mean_10mean) plot(tab$pcmating~tab$Angle_max_10mean) plot(tab$pcmating~tab$Angle_mean_10mean) plot(tab$pcmating~tab$Hz_max_10mean) plot(tab$pcmating~tab$Hz_mean_10mean) ``` #Scatter plots at threshold 15-Max ```{r} par(mfrow = c(2,2)) plot(tab$pcmating~tab$Events_15max) plot(tab$pcmating~tab$Duration.ms._15max)#* plot(tab$pcmating~tab$scalar_max_15max) plot(tab$pcmating~tab$scalar_mean_15max) plot(tab$pcmating~tab$changescalar_max_15max)#* plot(tab$pcmating~tab$changescalar_mean_15max) plot(tab$pcmating~tab$Changevector_max_15max) plot(tab$pcmating~tab$Changevector_mean_15max) plot(tab$pcmating~tab$Angle_max_15max)#* plot(tab$pcmating~tab$Angle_mean_15max) plot(tab$pcmating~tab$Hz_max_15max)#* plot(tab$pcmating~tab$Hz_mean_15max) ``` #Scatter plots at threshold 15-Mean ```{r} par(mfrow = c(2,2)) plot(tab$pcmating~tab$Duration.ms._15mean)#* plot(tab$pcmating~tab$scalar_max_15mean) plot(tab$pcmating~tab$scalar_mean_15mean) plot(tab$pcmating~tab$changescalar_max_15mean)#* plot(tab$pcmating~tab$changescalar_mean_15mean) plot(tab$pcmating~tab$Changevector_max_15mean) plot(tab$pcmating~tab$Changevector_mean_15mean) plot(tab$pcmating~tab$Angle_max_15mean) plot(tab$pcmating~tab$Angle_mean_15mean) plot(tab$pcmating~tab$Hz_max_15mean) plot(tab$pcmating~tab$Hz_mean_15mean) ``` #Scatter plots at threshold 20-Max ```{r} par(mfrow = c(2,2)) plot(tab$pcmating~tab$Events_20max) plot(tab$pcmating~tab$Duration.ms._20max) plot(tab$pcmating~tab$scalar_max_20max) plot(tab$pcmating~tab$scalar_mean_20max) plot(tab$pcmating~tab$changescalar_max_20max) plot(tab$pcmating~tab$changescalar_mean_20max) plot(tab$pcmating~tab$Changevector_max_20max) #* plot(tab$pcmating~tab$Changevector_mean_20max) plot(tab$pcmating~tab$Angle_max_20max) plot(tab$pcmating~tab$Angle_mean_20max)#* plot(tab$pcmating~tab$Hz_max_20max)#* plot(tab$pcmating~tab$Hz_mean_20max)#* ``` #Scatter plots at threshold 20-Mean ```{r} par(mfrow = c(2,2)) plot(tab$pcmating~tab$Duration.ms._20mean) plot(tab$pcmating~tab$scalar_max_20mean)#* plot(tab$pcmating~tab$scalar_mean_20mean) plot(tab$pcmating~tab$changescalar_max_20mean) plot(tab$pcmating~tab$changescalar_mean_20mean) plot(tab$pcmating~tab$Changevector_max_20mean) plot(tab$pcmating~tab$Changevector_mean_20mean) plot(tab$pcmating~tab$Angle_max_20mean) plot(tab$pcmating~tab$Angle_mean_20mean) plot(tab$pcmating~tab$Hz_max_20mean) plot(tab$pcmating~tab$Hz_mean_20mean) ``` ```{r} tab$Age <- as.factor(tab$Age) #***************************************************************************************************************************************************** #####Caroline #models threshold 5 fm1 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + (1|Replicate), family = binomial, data = tab) fm2 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Changevector_mean_5max + (1|Replicate), family = binomial, data = tab) fm3 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Duration.ms._5mean +(1|Replicate), family = binomial, data = tab) fm4 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + (1|Replicate), family = binomial, data = tab) fm5 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Duration.ms._5mean + Changevector_mean_5max + (1|Replicate), family = binomial, data = tab) fm6 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + Duration.ms._5mean + (1|Replicate), family = binomial, data = tab) fm7 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Changevector_mean_5max +Duration.ms._5mean +(1|Replicate), family = binomial, data = tab) fm8 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean + changescalar_mean_5max + Duration.ms._5max +(1|Replicate), family = binomial, data = tab) fm1a<- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + Duration.ms._5mean + (1|Replicate), family = binomial, data = tab) fm1b <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + (1|Replicate), family = binomial, data = tab) fm2a<- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Changevector_mean_5max + Age +(1|Replicate), family = binomial, data = tab) fm1c <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + Age+(1|Replicate), family = binomial, data = tab) fm1d <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Age + RH._Max + (1|Replicate), family = binomial, data = tab) fm1e <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Age + Temp_mean + (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm1c,fm1d,fm1e,fm2a) summary(fm2) ##models for threshold 10 fm11 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + Duration.ms._10max + changescalar_max_10max+Angle_max_10max+ (1|Replicate), family = binomial, data = tab) fm12 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + Duration.ms._10max + changescalar_max_10max+ (1|Replicate), family = binomial, data = tab) fm13 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean +RH._Max + Duration.ms._10mean + Changevector_mean_10mean + changescalar_max_10max+(1|Replicate), family = binomial, data = tab) fm14 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max +Duration.ms._10max + changescalar_mean_10max+Changevector_mean_10mean + (1|Replicate), family = binomial, data = tab) fm15 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean +Duration.ms._10mean + changescalar_mean_10max+ (1|Replicate), family = binomial, data = tab) fm11a <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max +Temp_mean + Duration.ms._10max + Changevector_mean_10mean +changescalar_max_10max+(1|Replicate), family = binomial, data = tab) fm11b <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + Duration.ms._10max + Changevector_max_10mean + Angle_max_10max+ (1|Replicate), family = binomial, data = tab) fm11c <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + Duration.ms._10mean + Changevector_mean_10mean +(1|Replicate), family = binomial, data = tab) fm11d <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean +Duration.ms._10mean +Changevector_mean_10mean + Angle_max_10max+ (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm1c,fm1d,fm1e,fm2a,fm11,fm12,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d) summary(fm2) # ##threshold 15 fm21 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean + changescalar_mean_15max + Duration.ms._15mean + Age+(1|Replicate), family = binomial, data = tab) fm22 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean + changescalar_mean_15max +Duration.ms._15max +(1|Replicate), family = binomial, data = tab) fm23 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + changescalar_mean_15max + Age +(1|Replicate), family = binomial, data = tab) fm24 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + changescalar_max_15mean + Angle_max_15max+ Angle_mean_15max+Duration.ms._15mean +(1|Replicate), family = binomial, data = tab) fm25 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + changescalar_mean_15max + Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) fm26 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + changescalar_mean_15max + Duration.ms._15mean +(1|Replicate), family = binomial, data = tab) fm27 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + changescalar_max_15mean + Age + (1|Replicate), family = binomial, data = tab) fm28 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean + changescalar_mean_15mean +(1|Replicate), family = binomial, data = tab) fm29 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15max+ (1|Replicate), family = binomial, data = tab) fm30 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation +Temp_mean + Duration.ms._15max + Age+(1|Replicate), family = binomial, data = tab) fm30a <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation +Temp_mean + Duration.ms._15max +changescalar_mean_15mean + Angle_mean_15max+ (1|Replicate), family = binomial, data = tab) fm29a<- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + changescalar_max_15mean + Duration.ms._15mean +(1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm1c,fm1d,fm1e,fm2a,fm11,fm12,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm29a,fm30,fm30a) summary(fm2) ##Threshold 20 fm31 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean + Angle_mean_20max + scalar_max_20mean +(1|Replicate), family = binomial, data = tab) fm32 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean + Changevector_max_20max + scalar_max_20mean +(1|Replicate), family = binomial, data = tab) fm31a <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Age + Temp_mean +scalar_max_20mean + (1|Replicate), family = binomial, data = tab) fm32a <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean + Angle_mean_20max + Changevector_max_20max + (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm1c,fm1d,fm1e,fm2a,fm11,fm12,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm29a,fm30,fm30a,fm31,fm32,fm31a,fm32a) summary(fm2) #combination of threseholds fm41 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean +Duration.ms._10mean + changescalar_mean_10max+Changevector_mean_5max + Age +(1|Replicate), family = binomial, data = tab) fm42 <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + changescalar_mean_10max+ (1|Replicate), family = binomial, data = tab) fm41a <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean +Duration.ms._10mean + Changevector_mean_5max +(1|Replicate), family = binomial, data = tab) fm42a <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + changescalar_mean_10max+ (1|Replicate), family = binomial, data = tab) fm41b <- glmer(cbind(pairs_formed,unformed_pairs) ~ Irradiation + Temp_mean +Duration.ms._10mean + changescalar_mean_10max+Changevector_mean_5max +(1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm1c,fm1d,fm1e,fm2a,fm11,fm12,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm29a,fm30,fm30a,fm31,fm32,fm31a,fm32a,fm41,fm41b,fm42,fm41a,fm42a) #the best model remains as fm2 ##Figure 9c head(tab) str(tab) summary(fm2) plot((pairs_formed / unformed_pairs) ~ fitted(fm2), data = tab) abline(lm((pairs_formed / unformed_pairs) ~ fitted(fm2), data = tab), col = "red") cor.test(tab$pairs_formed/tab$unformed_pairs,fitted(fm2)) summary(lm(fitted(fm2)~(tab$pairs_formed/tab$unformed_pairs)))$r.squared ########Correlation of factors from best model(fm12) cor.test(tab$changescalar_mean_5max,tab$Changevector_mean_5max) plot(tab$changescalar_mean_5max~tab$Changevector_mean_5max) ## Conclusion: Correlated.One can be dropped #######************************************************************************************************************************************************************* ``` THE IMPACT OF SHOCK ON THE INSEMINATION RATE OF 22 AND 29 DAY OLD PUPAE (COMBINED DATA) Figure 9d:INSEMINATION RATE ```{r} tab <- read.csv("Figure 9d.csv") head(tab) summary(tab) str(tab) tab$pcinsemination <- tab$full / (tab$full+tab$not_full) boxplot(tab$pcinsemination ~ tab$Treatments, xlab ="Treatments", ylab = "Insemination rate") #####SCATTER PLOTS plot(tab$pcinsemination~tab$RH._Max) plot(tab$pcinsemination~tab$RH._mean)#* plot(tab$pcinsemination~tab$Temp_mean)#* cor.test(tab$pcinsemination,tab$Temp_mean) plot(tab$pcinsemination~tab$Temp_Max) par(mfrow = c(2,2)) #Scatter plots at threshold 5-Max plot(tab$pcinsemination~tab$Events._5max)#* plot(tab$pcinsemination~tab$Duration.ms._5max) plot(tab$pcinsemination~tab$scalar_max_5max) plot(tab$pcinsemination~tab$scalar_mean_5max) plot(tab$pcinsemination~tab$changescalar_max_5max) plot(tab$pcinsemination~tab$changescalar_mean_5max)#* plot(tab$pcinsemination~tab$Changevector_max_5max) plot(tab$pcinsemination~tab$Changevector_mean_5max)#* plot(tab$pcinsemination~tab$Angle_max_5max) plot(tab$pcinsemination~tab$Angle_mean_5max) plot(tab$pcinsemination~tab$Hz_max_5max) plot(tab$pcinsemination~tab$Hz_mean_5max) ``` #Scatter plots at threshold 5-Mean ```{r } par(mfrow = c(2,2)) plot(tab$pcinsemination~tab$Duration.ms._5mean)#* plot(tab$pcinsemination~tab$scalar_max_5mean) plot(tab$pcinsemination~tab$scalar_mean_5mean) plot(tab$pcinsemination~tab$changescalar_max_5mean) plot(tab$pcinsemination~tab$changescalar_mean_5mean) plot(tab$pcinsemination~tab$Changevector_max_5mean) plot(tab$pcinsemination~tab$Changevector_mean_5mean) plot(tab$pcinsemination~tab$Angle_max_5mean) plot(tab$pcinsemination~tab$Angle_mean_5mean) plot(tab$pcinsemination~tab$Hz_max_5mean) plot(tab$pcinsemination~tab$Hz_mean_5mean) ``` #Scatter plots at threshold 10-Max ```{r } par(mfrow = c(2,2)) plot(tab$pcinsemination~tab$Duration.ms._10max)# plot(tab$pcinsemination~tab$Duration.ms._10max) plot(tab$pcinsemination~tab$scalar_max_10max) plot(tab$pcinsemination~tab$scalar_mean_10max)#* plot(tab$pcinsemination~tab$changescalar_max_10max) plot(tab$pcinsemination~tab$changescalar_mean_10max)#* cor.test(tab$pcinsemination,tab$changescalar_mean_10max) plot(tab$pcinsemination~tab$Changevector_max_10max) plot(tab$pcinsemination~tab$Changevector_mean_10max)#* plot(tab$pcinsemination~tab$Angle_max_10max) plot(tab$pcinsemination~tab$Angle_mean_10max)#* plot(tab$pcinsemination~tab$Hz_max_10max) plot(tab$pcinsemination~tab$Hz_mean_10max)#* ``` #Scatter plots at threshold 10-Mean ```{r } par(mfrow = c(2,2)) plot(tab$pcinsemination~tab$Duration.ms._10mean)#* cor.test(tab$pcinsemination,tab$Duration.ms._10mean) plot(tab$pcinsemination~tab$scalar_max_10mean) plot(tab$pcinsemination~tab$scalar_mean_10mean) plot(tab$pcinsemination~tab$changescalar_max_10mean)# plot(tab$pcinsemination~tab$changescalar_mean_10mean) plot(tab$pcinsemination~tab$Changevector_max_10mean) plot(tab$pcinsemination~tab$Changevector_mean_10mean)# plot(tab$pcinsemination~tab$Angle_max_10mean) plot(tab$pcinsemination~tab$Angle_mean_10mean) plot(tab$pcinsemination~tab$Hz_max_10mean) plot(tab$pcinsemination~tab$Hz_mean_10mean) ``` #Scatter plots at threshold 15-Max ```{r } par(mfrow = c(2,2)) plot(tab$pcinsemination~tab$Events_15max) plot(tab$pcinsemination~tab$Duration.ms._15max)#* plot(tab$pcinsemination~tab$scalar_max_15max) plot(tab$pcinsemination~tab$scalar_mean_15max) plot(tab$pcinsemination~tab$changescalar_max_15max)#* plot(tab$pcinsemination~tab$changescalar_mean_15max) plot(tab$pcinsemination~tab$Changevector_max_15max) plot(tab$pcinsemination~tab$Changevector_mean_15max) plot(tab$pcinsemination~tab$Angle_max_15max)#* plot(tab$pcinsemination~tab$Angle_mean_15max) plot(tab$pcinsemination~tab$Hz_max_15max) #* plot(tab$pcinsemination~tab$Hz_mean_15max) ``` #Scatter plots at threshold 15-Mean ```{r } par(mfrow = c(2,2)) plot(tab$pcinsemination~tab$Duration.ms._15mean)#* plot(tab$pcinsemination~tab$scalar_max_15mean)#* plot(tab$pcinsemination~tab$scalar_mean_15mean) plot(tab$pcinsemination~tab$changescalar_max_15mean)#* plot(tab$pcinsemination~tab$changescalar_mean_15mean) plot(tab$pcinsemination~tab$Changevector_max_15mean)#* plot(tab$pcinsemination~tab$Changevector_mean_15mean) plot(tab$pcinsemination~tab$Angle_max_15mean) plot(tab$pcinsemination~tab$Angle_mean_15mean) plot(tab$pcinsemination~tab$Hz_max_15mean) plot(tab$pcinsemination~tab$Hz_mean_15mean) ``` #Scatter plots at threshold 20-Max ```{r } par(mfrow = c(2,2)) plot(tab$pcinsemination~tab$Events_20max) plot(tab$pcinsemination~tab$Duration.ms._20max)#* plot(tab$pcinsemination~tab$scalar_max_20max) plot(tab$pcinsemination~tab$scalar_mean_20max) plot(tab$pcinsemination~tab$changescalar_max_20max)#* plot(tab$pcinsemination~tab$changescalar_mean_20max) plot(tab$pcinsemination~tab$Changevector_max_20max) plot(tab$pcinsemination~tab$Changevector_mean_20max) plot(tab$pcinsemination~tab$Angle_max_20max)#* plot(tab$pcinsemination~tab$Angle_mean_20max)#* plot(tab$pcinsemination~tab$Hz_max_20max)#* plot(tab$pcinsemination~tab$Hz_mean_20max)#* ``` #Scatter plots at threshold 20-Mean ```{r } par(mfrow = c(2,2)) plot(tab$pcinsemination~tab$Events_20mean)#* plot(tab$pcinsemination~tab$Duration.ms._20mean)#* plot(tab$pcinsemination~tab$scalar_max_20mean) plot(tab$pcinsemination~tab$scalar_mean_20mean) plot(tab$pcinsemination~tab$changescalar_max_20mean) plot(tab$pcinsemination~tab$changescalar_mean_20mean) plot(tab$pcinsemination~tab$Changevector_max_20mean)#* plot(tab$pcinsemination~tab$Changevector_mean_20mean) plot(tab$pcinsemination~tab$Angle_max_20mean) plot(tab$pcinsemination~tab$Angle_mean_20mean) plot(tab$pcinsemination~tab$Hz_max_20mean)#* plot(tab$pcinsemination~tab$Hz_mean_20mean) ``` # Models of Impact of transportation on the insemination rate ```{r } tab$Age <- as.factor(tab$Age) #models threshold 5 fm1 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max +Temp_mean + (1|Replicate), family = binomial, data = tab) fm2 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Duration.ms._5mean + (1|Replicate), family = binomial, data = tab) fm3 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Age + Duration.ms._5mean +(1|Replicate), family = binomial, data = tab) fm4 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Changevector_max_5max + (1|Replicate), family = binomial, data = tab) fm5 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Duration.ms._5mean + Changevector_max_5max +(1|Replicate), family = binomial, data = tab) fm6 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + (1|Replicate), family = binomial, data = tab) fm7 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Temp_mean + Changevector_max_5max + (1|Replicate), family = binomial, data = tab) fm8 <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + changescalar_mean_5max + scalar_max_5mean + (1|Replicate), family = binomial, data = tab) fm1a <- glmer(cbind(full,not_full) ~ Irradiation + Age+ Temp_mean + (1|Replicate), family = binomial, data = tab) fm1b <- glmer(cbind(full,not_full) ~ Irradiation + Age+ RH._Max + (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b) summary(fm3) fm11 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Duration.ms._10max + changescalar_mean_10max+(1|Replicate), family = binomial, data = tab) fm12 <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Duration.ms._10mean + changescalar_mean_10max+ (1|Replicate), family = binomial, data = tab) fm13 <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Duration.ms._10max + Changevector_mean_10max + changescalar_max_10mean+(1|Replicate), family = binomial, data = tab) fm14 <- glmer(cbind(full,not_full) ~ Irradiation + Duration.ms._10mean + changescalar_mean_10max+ Changevector_max_10mean +(1|Replicate), family = binomial, data = tab) fm15 <- glmer(cbind(full,not_full) ~ Irradiation + Angle_mean_15max+Duration.ms._10max + changescalar_mean_10max+ (1|Replicate), family = binomial, data = tab) fm11a <- glmer(cbind(full,not_full) ~ Irradiation + Age + RH._Max + Duration.ms._10max + changescalar_mean_10max+(1|Replicate), family = binomial, data = tab) fm12a <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Duration.ms._10mean + changescalar_mean_10max+ (1|Replicate), family = binomial, data = tab) fm11b <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Duration.ms._10max + scalar_mean_10max+(1|Replicate), family = binomial, data = tab) fm11c <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Duration.ms._10max + changescalar_mean_10max+(1|Replicate), family = binomial, data = tab) fm12b <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Duration.ms._10mean + (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm11,fm12,fm13,fm14,fm11a,fm11b,fm11c,fm12a,fm12b) summary(fm12) #threshold 15 fm21 <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Angle_max_15max+changescalar_max_15mean+Duration.ms._15max+(1|Replicate), family = binomial, data = tab) fm22 <- glmer(cbind(full,not_full) ~ Irradiation + RH._mean + changescalar_max_15mean+Duration.ms._15mean+ (1|Replicate), family = binomial, data = tab) fm23 <- glmer(cbind(full,not_full) ~ Irradiation + Angle_max_15max+Duration.ms._15max+changescalar_max_15mean+(1|Replicate), family = binomial, data = tab) fm24 <- glmer(cbind(full,not_full) ~ Irradiation + changescalar_max_15mean + Angle_max_15max+Duration.ms._15mean+ (1|Replicate), family = binomial, data = tab) fm25 <- glmer(cbind(full,not_full) ~ Irradiation + changescalar_max_15mean + Angle_max_15max+ scalar_max_10mean+(1|Replicate), family = binomial, data = tab) fm26 <- glmer(cbind(full,not_full) ~ Irradiation + Angle_max_15max+scalar_max_15mean + Duration.ms._15max +(1|Replicate), family = binomial, data = tab) fm27 <- glmer(cbind(full,not_full) ~ Irradiation + Angle_max_15max+Changevector_max_15mean+scalar_max_10mean+ (1|Replicate), family = binomial, data = tab) fm28 <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Changevector_max_15mean+scalar_max_15mean+(1|Replicate), family = binomial, data = tab) fm29 <- glmer(cbind(full,not_full) ~ Irradiation + changescalar_mean_15max + Changevector_mean_15mean+ Age+ (1|Replicate), family = binomial, data = tab) fm30 <- glmer(cbind(full,not_full) ~ Irradiation + scalar_max_15mean+ Duration.ms._15mean+ Changevector_max_15mean+(1|Replicate), family = binomial, data = tab) fm21a <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Angle_max_15max+changescalar_max_15mean+ (1|Replicate), family = binomial, data = tab) fm27a <- glmer(cbind(full,not_full) ~ Irradiation +Temp_mean + Duration.ms._15mean+ Changevector_max_15mean+ (1|Replicate), family = binomial, data = tab) fm21b <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Angle_max_15max+changescalar_max_15mean+ (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm11,fm12,fm13,fm14,fm11a,fm11b,fm11c,fm12a,fm12b,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm30,fm21a,fm27a,fm21b) summary(fm12) fm31 <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean +Changevector_max_20max+(1|Replicate), family = binomial, data = tab) fm32 <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Changevector_max_20mean+ Duration.ms._20max +(1|Replicate), family = binomial, data = tab) fm31a <- glmer(cbind(full,not_full) ~ Irradiation + RH._mean + Angle_max_20max +(1|Replicate), family = binomial, data = tab) fm31b <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean +Duration.ms._20max +(1|Replicate), family = binomial, data = tab) fm32a <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Changevector_max_20mean+ Duration.ms._20mean +(1|Replicate), family = binomial, data = tab) fm31c <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean +Changevector_max_20max+Angle_mean_20max +(1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm11,fm12,fm13,fm14,fm11a,fm11b,fm11c,fm12a,fm12b,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm30,fm21a,fm27a,fm21b,fm31,fm32,fm31a,fm31b,fm32a,fm31c) summary(fm12) #combination of threseholds fm41 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + changescalar_mean_10max+ Duration.ms._5mean +Angle_max_20max +(1|Replicate), family = binomial, data = tab) fm42 <- glmer(cbind(full,not_full) ~ Irradiation + Temp_mean + Duration.ms._10mean + Angle_max_20max ++ (1|Replicate), family = binomial, data = tab) fm43 <- glmer(cbind(full,not_full) ~ Irradiation + RH._mean + changescalar_max_15mean+Duration.ms._5mean+ Angle_max_20max +(1|Replicate), family = binomial, data = tab) fm44 <- glmer(cbind(full,not_full) ~ Irradiation + RH._mean + Angle_max_20max +(1|Replicate), family = binomial, data = tab) fm45 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Age + changescalar_mean_10max+(1|Replicate), family = binomial, data = tab) fm46 <- glmer(cbind(full,not_full) ~ Irradiation + RH._Max + Age + changescalar_mean_10max+ Duration.ms._5mean +(1|Replicate), family = binomial, data = tab) fm47 <- glmer(cbind(full,not_full) ~ Irradiation + RH._mean + changescalar_max_15mean+Duration.ms._5mean+ (1|Replicate), family = binomial, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm1a,fm1b,fm11,fm12,fm13,fm14,fm11a,fm11b,fm11c,fm12a,fm12b,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm30,fm21a,fm27a,fm21b,fm31,fm32,fm31a,fm31b,fm32a,fm31c,fm41,fm42,fm43,fm44,fm45,fm46,fm47) summary(fm12) #the best model remains as fm12 ##Figure 9d head(tab) str(tab) summary(fm12) plot((full / not_full) ~ fitted(fm12), data = tab) abline(lm((full / not_full) ~ fitted(fm12), data = tab), col = "red") cor.test(tab$full/tab$not_full,fitted(fm12)) summary(lm(fitted(fm12)~(tab$full/tab$not_full)))$r.squared ##### Independent variables not correlated ``` THE IMPACT OF SHOCK ON THE MEAN SPERMATHECAL VALUE(MSV) OF 22 AND 29 DAY OLD PUPAE(COMBINED DATA) Figure 9e ```{r} tab <- read.csv("Figure 9e.csv") head(tab) summary(tab) str(tab) boxplot(tab$MSV ~ tab$Treatments, xlab ="Treatments", ylab = "Mean Spermathecal Value(MSV)") na.omit(tab) #####SCATTER PLOTS plot(tab$MSV~tab$RH._Max)#* plot(tab$MSV~tab$RH._mean)#* plot(tab$MSV~tab$Temp_mean)#* plot(tab$MSV~tab$Temp_Max) #Scatter plots at threshold 5-Max par(mfrow = c(2,2)) plot(tab$MSV~tab$Events._5max) plot(tab$MSV~tab$Duration.ms._5max) plot(tab$MSV~tab$scalar_max_5max) plot(tab$MSV~tab$scalar_mean_5max) plot(tab$MSV~tab$changescalar_max_5max) plot(tab$MSV~tab$changescalar_mean_5max)#* plot(tab$MSV~tab$Changevector_max_5max) plot(tab$MSV~tab$Changevector_mean_5max)#* plot(tab$MSV~tab$Angle_max_5max) plot(tab$MSV~tab$Angle_mean_5max) plot(tab$MSV~tab$Hz_max_5max) plot(tab$MSV~tab$Hz_mean_5max) ``` #Scatter plots at threshold 5-Mean ```{r } par(mfrow = c(2,2)) plot(tab$MSV~tab$Duration.ms._5mean)#* plot(tab$MSV~tab$scalar_max_5mean) plot(tab$MSV~tab$scalar_mean_5mean) plot(tab$MSV~tab$changescalar_max_5mean) plot(tab$MSV~tab$changescalar_mean_5mean) plot(tab$MSV~tab$Changevector_max_5mean) plot(tab$MSV~tab$Changevector_mean_5mean) plot(tab$MSV~tab$Angle_max_5mean) plot(tab$MSV~tab$Angle_mean_5mean) plot(tab$MSV~tab$Hz_max_5mean) plot(tab$MSV~tab$Hz_mean_5mean) ``` #Scatter plots at threshold 10-Max ```{r } par(mfrow = c(2,2)) plot(tab$MSV~tab$Events_10max) plot(tab$MSV~tab$Duration.ms._10max) plot(tab$MSV~tab$scalar_max_10max) plot(tab$MSV~tab$scalar_mean_10max)#* plot(tab$MSV~tab$changescalar_max_10max) plot(tab$MSV~tab$changescalar_mean_10max)#* plot(tab$MSV~tab$Changevector_max_10max) plot(tab$MSV~tab$Changevector_mean_10max)#* plot(tab$MSV~tab$Angle_max_10max) plot(tab$MSV~tab$Angle_mean_10max)#* plot(tab$MSV~tab$Hz_max_10max) plot(tab$MSV~tab$Hz_mean_10max)#* ``` #Scatter plots at threshold 10-Mean ```{r } par(mfrow = c(2,2)) plot(tab$MSV~tab$Duration.ms._10mean)#* plot(tab$MSV~tab$scalar_max_10mean) plot(tab$MSV~tab$scalar_mean_10mean) plot(tab$MSV~tab$changescalar_max_10mean) plot(tab$MSV~tab$changescalar_mean_10mean) plot(tab$MSV~tab$Changevector_max_10mean) plot(tab$MSV~tab$Changevector_mean_10mean) plot(tab$MSV~tab$Angle_max_10mean) plot(tab$MSV~tab$Angle_mean_10mean) plot(tab$MSV~tab$Hz_max_10mean) plot(tab$MSV~tab$Hz_mean_10mean) ``` #Scatter plots at threshold 15-Max ```{r } par(mfrow = c(2,2)) plot(tab$MSV~tab$Events_15max) plot(tab$MSV~tab$Duration.ms._15max) plot(tab$MSV~tab$scalar_max_15mean )#* plot(tab$MSV~tab$scalar_mean_15max) plot(tab$MSV~tab$changescalar_max_15max) plot(tab$MSV~tab$changescalar_mean_15max) plot(tab$MSV~tab$Changevector_max_15max) plot(tab$MSV~tab$Changevector_mean_15max) plot(tab$MSV~tab$Angle_max_15max)#* plot(tab$MSV~tab$Angle_mean_15max) plot(tab$MSV~tab$Hz_max_15max) #* plot(tab$MSV~tab$Hz_mean_15max) ``` #Scatter plots at threshold 15-Mean ```{r } par(mfrow = c(2,2)) plot(tab$MSV~tab$Duration.ms._15mean)#* cor.test(tab$MSV,tab$Duration.ms._15mean) plot(tab$MSV~tab$scalar_max_15mean) plot(tab$MSV~tab$scalar_mean_15mean) plot(tab$MSV~tab$changescalar_max_15mean)#* plot(tab$MSV~tab$changescalar_mean_15mean) plot(tab$MSV~tab$Changevector_max_15mean) plot(tab$MSV~tab$Changevector_mean_15mean) plot(tab$MSV~tab$Angle_max_15mean) plot(tab$MSV~tab$Angle_mean_15mean) plot(tab$MSV~tab$Hz_max_15mean) plot(tab$MSV~tab$Hz_mean_15mean) ``` #Scatter plots at threshold 20-Max ```{r } par(mfrow = c(2,2)) plot(tab$MSV~tab$Events_20mean) plot(tab$MSV~tab$Duration.ms._20max)#* plot(tab$MSV~tab$scalar_max_20max) plot(tab$MSV~tab$scalar_mean_20max)#* plot(tab$MSV~tab$changescalar_max_20max) plot(tab$MSV~tab$changescalar_mean_20max) plot(tab$MSV~tab$Changevector_max_20max)#* plot(tab$MSV~tab$Changevector_mean_20max) plot(tab$MSV~tab$Angle_max_20max)#* plot(tab$MSV~tab$Angle_mean_20max) plot(tab$MSV~tab$Hz_max_20max)#* plot(tab$MSV~tab$Hz_mean_20max)#* ``` #Scatter plots at threshold 20-Mean ```{r } par(mfrow = c(2,2)) plot(tab$MSV~tab$Duration.ms._20mean)#* plot(tab$MSV~tab$scalar_max_20mean) plot(tab$MSV~tab$scalar_mean_20mean) plot(tab$MSV~tab$changescalar_max_20mean) plot(tab$MSV~tab$changescalar_mean_20mean) plot(tab$MSV~tab$Changevector_max_20mean)#* plot(tab$MSV~tab$Changevector_mean_20mean) plot(tab$MSV~tab$Angle_max_20mean) plot(tab$MSV~tab$Angle_mean_20mean) plot(tab$MSV~tab$Hz_max_20mean)#* plot(tab$MSV~tab$Hz_mean_20mean) ``` #Models of the impact of shock during transportation, on the Mean Spermathecal Value (MSV) ```{r } #models threshold 5 fm1 <- lme(MSV ~ Irradiation + RH._Max + Temp_mean, random=~1|Replicate, data = tab) fm2 <- lme(MSV ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Changevector_mean_5max, random=~1|Replicate, data = tab) fm3 <- lme(MSV ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max +Angle_mean_5max , random=~1|Replicate, data = tab) fm4 <- lme(MSV ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max +Duration.ms._5mean, random=~1|Replicate, data = tab) fm5 <- lme(MSV ~ Irradiation + RH._Max + Temp_mean + Duration.ms._5mean, random=~1|Replicate, data = tab) fm6 <- lme(MSV ~ Irradiation + RH._Max + Temp_mean + changescalar_mean_5max + Angle_mean_5max + Duration.ms._5mean, random=~1|Replicate, data = tab) fm7 <- lme(MSV ~ Irradiation + RH._Max + Temp_mean +Changevector_mean_5max,random=~1|Replicate, data = tab) fm8 <- lme(MSV ~ Irradiation + Temp_mean + changescalar_mean_5max + Duration.ms._5max +Angle_mean_5max, random=~1|Replicate, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8) summary(fm1) ##models for threshold 10 fm11 <- lme(MSV ~ Irradiation + Temp_mean + changescalar_mean_10max+Angle_mean_10max, random=~1|Replicate, data = tab) fm12 <- lme(MSV ~ Irradiation + Temp_mean + Duration.ms._10mean + Changevector_mean_10max + Hz_mean_10max , random=~1|Replicate, data = tab) fm13 <- lme(MSV ~ Irradiation + Temp_mean + Duration.ms._10max + Changevector_mean_10max + Hz_mean_10max , random=~1|Replicate, data = tab) fm14 <- lme(MSV ~ Irradiation + Duration.ms._10mean + changescalar_mean_10max+ Hz_mean_10max , random=~1|Replicate, data = tab) fm15 <- lme(MSV ~ Irradiation + Temp_mean +Angle_mean_10max + changescalar_mean_10max, random=~1|Replicate, data = tab) fm11a <- lme(MSV ~ Irradiation + Temp_mean + Duration.ms._10max + Changevector_mean_10max , random=~1|Replicate, data = tab) fm11b <- lme(MSV ~ Irradiation + Temp_mean + Duration.ms._10mean + changescalar_mean_10max, random=~1|Replicate, data = tab) fm11c <- lme(MSV ~ Irradiation + Temp_mean + Duration.ms._10mean , random=~1|Replicate, data = tab) fm11d <- lme(MSV ~ Irradiation + Temp_mean +Duration.ms._10mean +Hz_mean_10max, random=~1|Replicate, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm11,fm12,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d) summary(fm11c) # ##threshold 15 fm21 <-lme(MSV ~ Irradiation + Temp_mean + Duration.ms._15mean , random=~1|Replicate, data = tab) fm22 <- lme(MSV ~ Irradiation + Temp_mean +Angle_mean_15max, random=~1|Replicate, data = tab) fm23 <- lme(MSV ~ Irradiation + Temp_mean +Hz_max_15max , random=~1|Replicate,data = tab) fm24 <-lme(MSV ~ Irradiation + Temp_mean +Hz_max_15max +Duration.ms._15mean , random=~1|Replicate, data = tab) fm25 <- lme(MSV ~ Irradiation +Temp_mean + Duration.ms._15mean +Angle_mean_15max, random=~1|Replicate, data = tab) fm26 <- lme(MSV ~ Irradiation +Temp_mean, random=~1|Replicate, data = tab) fm27 <- lme(MSV ~ Irradiation +Angle_mean_15max, random=~1|Replicate, data = tab) fm28 <- lme(MSV ~ Irradiation + Duration.ms._15mean , random=~1|Replicate, data = tab) fm29 <- lme(MSV ~ Irradiation +Angle_mean_15max+ Duration.ms._15mean , random=~1|Replicate, data = tab) fm30 <- lme(MSV ~ Irradiation +Temp_mean +Angle_mean_15max , random=~1|Replicate, data = tab) fm30a <- lme(MSV ~ Irradiation +Temp_mean + Duration.ms._15mean , random=~1|Replicate,data = tab) fm29a<- lme(MSV ~ Irradiation + Duration.ms._15mean +scalar_mean_15mean, random=~1|Replicate, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm30,fm30a,fm29a) summary(fm28) ##Threshold 20 fm31 <- lme(MSV ~ Irradiation + Temp_mean + Duration.ms._20max + Angle_mean_20max +Hz_max_20mean, random=~1|Replicate,data = tab) fm32 <- lme(MSV ~ Irradiation + Temp_mean +Duration.ms._20mean +Hz_max_20mean, random=~1|Replicate, data = tab) fm31a <-lme(MSV ~ Irradiation + Temp_mean + Changevector_max_20mean + Hz_max_20max , random=~1|Replicate, data = tab) fm32a <- lme(MSV ~ Irradiation + Temp_mean +Changevector_max_20mean +Angle_mean_20max , random=~1|Replicate,data = tab) fm32b <- lme(MSV ~ Irradiation + Temp_mean + Changevector_max_20max +Duration.ms._20mean, random=~1|Replicate,data = tab) fm31b <- lme(MSV ~ Irradiation + Temp_mean + Changevector_max_20mean + Hz_max_20max , random=~1|Replicate, data = tab) fm32c <- lme(MSV ~ Irradiation + Temp_mean + Hz_max_20max , random=~1|Replicate, data = tab) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm30,fm30a,fm29a,fm31,fm32,fm31a,fm32a,fm31b,fm32b,fm32c) summary(fm28) #combination of threseholds fm41 <- lme(MSV ~ Irradiation + Temp_mean + Duration.ms._10mean + changescalar_mean_10max+Angle_mean_15max , random=~1|Replicate, data = tab) fm42 <- lme(MSV ~ Irradiation + Temp_mean + Duration.ms._10mean + changescalar_mean_10max+Hz_mean_10max + Duration.ms._15mean , random=~1|Replicate, data = tab) summary(fm28) AICc(fm1,fm2,fm3,fm4,fm5,fm6,fm7,fm8,fm13,fm14,fm15,fm11a,fm11b,fm11c,fm11d,fm21,fm22,fm23,fm24,fm25,fm26,fm27,fm28,fm29,fm30,fm30a,fm29a,fm31,fm32,fm31a,fm32a,fm31b,fm32b,fm32c,fm41,fm42) summary(fm28) #the best model remains as fm28 ##Fig 9e head(tab) str(tab) summary(fm28) plot(MSV ~ fitted(fm28), data = tab) abline(lm(MSV ~ fitted(fm28), data = tab), col = "red") cor.test(tab$MSV,fitted(fm28)) summary(lm(fitted(fm28)~(tab$MSV)))$r.squared ``` ALL ANALYSIS OF SUPPORTING INFORMATION Analysis of the statistical relationships of temperature and humidity in/between 22 and 29 day old pupae ```{r } ###### Correlation of temperature and humidity at age 22, 29 tab2 <- read.csv("Temp_RH_22.csv") head(tab2) plot(tab2$Humidity,tab2$Temperature,xlab = "Humidity", ylab = " Temperature (%)") cor.test(tab2$Humidity,tab2$Temperature, method = "pearson") tab2 <- read.csv("Temp_RH_29_2.csv") head(tab2) plot(tab2$Humidity,tab2$Temperature,xlab = "Humidity", ylab = " Temperature (%)") cor.test(tab2$Humidity,tab2$Temperature, method = "pearson") ########## differences of temperature betweeen ages tab2 <- read.csv("Temp_humidity .csv") head(tab2) boxplot(tab2$Max..T.~ tab2$age ,xlab = "Age", ylab = " Temperature (°C) ") fm2 <- lm (Max..T.~ age, data = tab2) summary(fm2) boxplot(tab2$Min.T.~ tab2$age ,xlab = "Age", ylab = " Temperature (°C)") fm2 <- lm (Min.T.~ age, data = tab2) summary(fm2) boxplot(tab2$Average..T.~ tab2$age ,xlab = "Age", ylab = " Temperature (°C)") fm2 <- lm (Average..T.~ age, data = tab2) summary(fm2) ################differences of humidity between ages boxplot(tab2$Max..RH.~ tab2$age ,xlab = "Age", ylab = " Relative Humidity (RH)") fm2 <- lm (Max..RH.~ age, data = tab2) summary(fm2) boxplot(tab2$Min.RH.~ tab2$age ,xlab = "Age", ylab = " Relative Humidity (RH)") fm2 <- lm (Min.RH.~ age, data = tab2) summary(fm2) boxplot(tab2$Average.RH.~ tab2$age ,xlab = "Age", ylab = "Relative Humidity (RH)") fm2 <- lm (Average.RH.~ age, data = tab2) summary(fm2) ########################################################################## data_4<- read.csv("Temp_humidity_2.csv") head(data_4) #### facet wrap with Pupal_age ggplot(data_4,aes(x=environ ,y=Environ_values,fill=factor(age)))+ geom_boxplot(alpha=0.3) + geom_jitter(width=0.1,alpha=0.2)+ labs(fill = "age") + geom_point(position=position_jitterdodge(),alpha=0.3) + facet_wrap(~age) + theme_bw(base_size = 16) #### facet wrap with Environ measure ggplot(data_4,aes(x=factor(age),y=Environ_values,fill=environ))+ geom_boxplot(alpha=0.3) + geom_jitter(width=0.1,alpha=0.2)+ labs(fill = "environ") + geom_point(position=position_jitterdodge(),alpha=0.3) + facet_wrap(~environ) + theme_bw(base_size = 16) ``` SUPPORTING FIGURES S2-S8 ANALYSIS OF THE IMPACT OF IRRADIATION AND TRASPORTATION(COMBINED DATA FROM 22 AND 29 DAY OLD PUPAE) Figure S2a and S3a: Emergence rate ```{r } tabS2a_S3a=read.csv("Figure S2a and S3a.csv") head(tabS2a_S3a) Emerg_rate<- tabS2a_S3a$emerged / (tabS2a_S3a$unemerged+ tabS2a_S3a$emerged) ###Figure S2a tiff("Figure S2a.tiff", width = 7.5, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(Emerg_rate~Treatments,data = tabS2a_S3a, ylab = expression(bold("Emergence rate (22 and 29 day pupae)")), xlab = expression(bold("Treatments"))) dev.off() ### Figure S3a tiff("Figure S3a.tiff", width = 4, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(Emerg_rate~Pupal_age,data = tabS2a_S3a, ylab = expression(bold("Emergence rate (22 and 29 day pupae)")), xlab = expression(bold("Pupal age"))) dev.off() ###Significance ###Figure s2a fmS2a <- glmer(cbind(emerged, unemerged) ~ Treatment +(1|Replicate), family = binomial, data = tabS2a_S3a) summary(fmS2a ) ###Figure s3a fmS3a <- glmer(cbind(emerged, unemerged) ~ Pupal_age +(1|Replicate), family = binomial, data = tabS2a_S3a) summary(fmS3a) ###Differences among treatments- non-parametric test kruskal.test(Emerg_rate~Treatment, tabS2a_S3a) #################################################################################################### ``` Figure S2b and S3b: Flight propensity ```{r } tabS2b_S3b= read.csv("Figure S2b and S3b.csv") head(tabS2b_S3b) Flight_rate<- tabS2b_S3b$out / (tabS2b_S3b$in.+ tabS2b_S3b$out) tabS2b_S3b$Pupal_age<- as.factor(tabS2b_S3b$Pupal_age) ### Figure S2b tiff("Figure S2b.tiff", width = 7.5, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(Flight_rate ~ tabS2b_S3b$Treatments,xlab = "Treatments", ylab = "flight propensity (22 and 29 day pupae)") boxplot(Emerg_rate~Treatments,data = tabS2b_S3b, ylab = expression(bold("Flight propensity (22 and 29 day)")), xlab = expression(bold("Treatments"))) dev.off() ###Figure S3b tiff("Figure S3b.tiff", width = 4, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(Flight_rate ~ tabS2b_S3b$Pupal_age,xlab = "Pupal age", ylab = "flight propensity (Pupal_age)") boxplot(Emerg_rate~Pupal_age,data = tabS2b_S3b, ylab = expression(bold("Flight propensity (22 and 29 day)")), xlab = expression(bold("Pupal age"))) dev.off() ###Significance ##Figure S2b fmS2b <- glmer(cbind(out, in.) ~ Treatment +(1|Replicate), family = binomial, data = tabS2b_S3b) summary(fmS2b) ###Figure S3b fmS3b <- glmer(cbind(out, in.) ~ Pupal_age +(1|Replicate), family = binomial, data = tabS2b_S3b) summary(fmS3b) ######## non-parametric ###Differences among treatments- non-parametric test kruskal.test(Flight_rate~Treatment, tabS2b_S3b) ``` Figure S2c and S3c: Mating ability ```{r } tabS2c_S3c= read.csv("Figure S2c and S3c.csv") head(tabS2c_S3c) mating_prop<- tabS2c_S3c$pairs_formed / (tabS2c_S3c$unformed_pairs+ tabS2c_S3c$pairs_formed ) tabS2c_S3c$Pupal_age<- as.factor(tabS2c_S3c$Pupal_age) ### Figure S2c tiff("Figure S2c.tiff", width = 7.5, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(mating_prop ~ tabS2c_S3c$Treatments,xlab = "Treatments", ylab = "Mating ability") boxplot(Emerg_rate~Treatments,data = tabS2c_S3c, ylab = expression(bold("Mating ability (22 and 29 day)")), xlab = expression(bold("Treatments"))) dev.off() ### Figure S3c tiff("Figure S3c.tiff", width = 4, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(mating_prop ~ tabS2c_S3c$Pupal_age,xlab = "Pupal age", ylab = "Mating ability") boxplot(Emerg_rate~Pupal_age,data = tabS2c_S3c, ylab = expression(bold("Mating ability (22 and 29 day)")), xlab = expression(bold("Pupal age"))) dev.off() ###Significance ###Figure S2c fmS2c <- glmer(cbind(unformed_pairs, pairs_formed)~ Treatment +(1|Replicate), family = binomial, data = tabS2c_S3c) summary(fmS2c) ###Figure S3c fmS3c <- glmer(cbind(unformed_pairs, pairs_formed) ~ Pupal_age +(1|Replicate), family = binomial, data = tabS2c_S3c) summary(fmS3c) ###Differences among treatments- non-parametric test kruskal.test(mating_prop~Treatment, tabS2c_S3c) ``` Figure S2d and S3d: Insemination rate ```{r } tabS2d_S3d= read.csv("Figure S2d and S3d.csv") head(tabS2d_S3d) Insemination_rate<- tabS2d_S3d$Inseminated / (tabS2d_S3d$Empty+ tabS2d_S3d$Inseminated) tabS2d_S3d$Pupal_age<- as.factor(tabS2d_S3d$Pupal_age) ### Figure S2d tiff("Figure S2d.tiff", width = 7.5, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(Emerg_rate~Treatments,data = tabS2d_S3d, ylab = expression(bold("Insemination rate (22 and 29 day)")), xlab = expression(bold("Treatments"))) dev.off() ### Figure S3d tiff("Figure S3d.tiff", width = 4, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(Emerg_rate~Pupal_age,data = tabS2d_S3d, ylab = expression(bold("Insemination rate (22 and 29 day)")), xlab = expression(bold("Pupal age"))) dev.off() ###Significance ###Figure S2d fmS2d <- glmer(cbind(Inseminated,Empty) ~ Treatment +(1|Replicate), family = binomial, data = tabS2d_S3d) summary(fmS2d) ###Figure S3d fmS3d <- glmer(cbind(Inseminated, Empty) ~ Pupal_age +(1|Replicate), family = binomial, data = tabS2d_S3d) summary(fmS3d) ###Differences among treatments- non-parametric test kruskal.test(Insemination_rate~Treatment, tabS2d_S3d) ``` Figure S2e and S3e:Mean spermathecal value (MSV) ```{r } tabS2e_S3e= read.csv("Figure S2e and S3e.csv") head(tabS2e_S3e) tabS2e_S3e$Pupal_age<- as.factor(tabS2e_S3e$Pupal_age) ###Figure S2e tiff("Figure S2e.tiff", width = 7.5, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(MSV~Treatments,data = tabS2e_S3e, ylab = expression(bold("Mean Spermathecal Value (22 and day old)")), xlab = expression(bold("Treatments"))) dev.off() ### Figure S3e tiff("Figure S3e.tiff", width = 4, height =4 , units = 'in', compression = 'lzw',res = 300) boxplot(MSV~Pupal_age,data = tabS2e_S3e, ylab = expression(bold("Mean Spermathecal Value (22 and 29 day old)")), xlab = expression(bold("Pupal age"))) dev.off() ###significance ###Figure S2e fmS2e <- lme(MSV ~ Treatment, random=~1|Replicate,, data = tabS2e_S3e) summary(fmS2e) ###Figure S3e fmS3e <- lme(MSV ~ Pupal_age, random=~1|Replicate,, data = tabS2e_S3e) summary(fmS3e) ###Differences among treatments- non-parametric test kruskal.test(MSV~Treatment, tabS2e_S3e) ```