USE OF PCR, IFAT AND IN VITRO CULTURE IN THE DETECTION OF LEISHMANIA INFANTUM INFECTION IN DOGS AND EVALUATION OF THE PREVALENCE OF CANINE LEISHMANIAISIS IN A LOW ENDEMIC AREA IN TUNISIA


Summary:
The aim of this study was to assess the use of parasitological, serological and molecular methods for the detection of Leishmania infection in blood of 67 dogs and to investigate the prevalence of canine leishmaniasis (CanL) in Kairouan (central Tunisia), an area known to be of reduced endemity and has not been studied since 1973. Veterinarians clinically examined all dogs, and the titer of anti-leishmania antibodies was determined by indirect immunofluorescence antibody test. The presence of Leishmania was performed by PCR and in vitro culture. IFAT was positive in 12% of dogs and promastigote form of the parasite was isolated by in vitro culture from only 4.5% of them. However, DNA of Leishmania was detected by PCR in 20.9% of dogs. PCR was more sensitive than IFAT (p = 0.004) and in vitro culture (p < 10^-3). A prevalence of 21% was found in Kairouan, which is significant high (p < 10^-3) when compared to that of thirty years ago. This state is in correlation with the increase in other Mediterranean countries. Furthermore, 50% of positive dogs were asymptomatic. Preventive measures must be taken against these dogs as for symptomatic ones since their role in the transmission of the infection to vectors has been proven.

KEY WORDS: canine leishmaniasis, prevalence, Tunisia, serology, PCR, in vitro culture.

Canine infection with Leishmania infantum is important as a cause of disease in dogs and as a reservoir for human leishmaniasis. Accurate and rapid detection of canine leishmaniasis (CanL) is of great importance to prevent transmission. Clinical diagnosis is difficult, due to variable symptomatology. Furthermore, infected dogs can be asymptomatic and develop the disease in many months or years (Dedet, 1999; Ferrer, 1999). Infected dogs have an important role in the transmission of the disease, mainly by symptomatic dogs even with healthy skin, and also by asymptomatic ones (Rioux et al., 1979; Alvar et al., 1994; Dye, 1996). In Tunisia, CanL is due to L. infantum (Kinoplastida: Trypanosomatidae) and transmitted by the bite of infected females of Phlebotomus (Larroussius) perniciosus. Few studies have investigated CanL in Tunisia (Dedet et al., 1973; Ben Said et al., 1992; Chargui et al., 2007), consequently, there has been a lack of information about CanL in the region of Kairouan since 1973. Furthermore, all previous studies have been performed by serological methods. Several studies suggesting that the rate of infection is higher than the figures found by serological investigations (Lachaud et al., 2002; Leontides et al., 2002; Oliva et al., 2006). Several molecular methods had been developed for the detection of Leishmania (Van Eys et al., 1992; Ashford et al., 1995; Spanakos et al., 2002). Though PCR was already used in the diagnosis of human leishmaniasis in Tunisia (Chargui et al., 2005), this is the first study to investigate the prevalence of CanL, with molecular methods compared to serological and parasitological ones.

Résumé : Application de la PCR, de l'IFI et de la culture in vitro dans la détection de l'infection par Leishmania infantum chez le chien et estimation de la prévalence de la leishmaniosse canine dans une région de faible endémie en Tunisie.

Le but de cette étude était, d'une part, d'évaluer les techniques de PCR, d'immunofluorescence indirecte (IFI) et la culture in vitro dans le diagnostic de l'infection par Leishmania infantum dans le sang de 67 chiens et, d'autre part, d'estimer la prévalence de la leishmaniose canine (LCan) à Kairouan, une région d'endémie réduite en Tunisie et non étudiée depuis 1973. Les chiens de l'étude ont été cliniquement examinés par les vétérinaires pour des signes évoquant la LCan. La présence de Leishmania a été évaluée par PCR et par culture in vitro. L'ADN de leishmania a été détecté par PCR chez 20.9% des chiens alors que la forme promastigote des Leishmania a été isolée par culture chez 4.5% des chiens. Les anticorps anti-leishmaniesiens ont été détectés par IFI chez 12% des chiens. La technique PCR était plus sensible que l'IFI (p = 0.004) et la culture in vitro (p < 10^-5). Une prévalence de la LCan de 21% a été retenue à Kairouan qui est significativement plus importante (p < 10^-3) que celle estimée dans d'autres travaux. En outre, 50% de chiens positifs étaient asymptomatiques et prouvés être capable de transmettre le parasite aux vecteurs. Ainsi, des mesures préventives doivent être prises contre aussi bien les chiens symptomatics que les chiens asymptomatiques.

MOTS CLÉS : leishmaniose canine, prévalence, Tunisie, IFI, PCR, culture in vitro.
MATERIAL AND METHODS

Canine populations

67 household dogs, but left outdoors in the day, were randomly collected between June and July 2005. All dogs tested lived in a rural district of Kairouan (ElAlaa) known as a reduced endemic zone in central Tunisia (Dedet et al., 1973). This region is belonging to the arid bioclimatic stage. In a recent study, a codominance of subgenus Larroussius and P. papatasi species of Phlebotomus vector was observed in central Tunisia (Ghrab et al., 2007). Human visceral leishmaniasis is known to be detected occasionally in the central Tunisia (Ayadi et al., 1991; Besbes et al., 1994). However, an important number of cases emerged recently in this region (Ben Salah et al., 2000). Tested dogs were examined for clinical signs of the disease, including dermatological lesions, ocular changes, loss of weight, apathy, lymph node and spleen enlargement. Venous blood samples were taken from the foreleg. After blood centrifugation, sera were used in serological test and buffy coats were tested by PCR and in vitro culture.

SEROLOGICAL STUDY

Serum samples were analyzed for antibodies to Leishmania spp. by the indirect immunofluorescence antibody test (IFAT). IFAT was performed using a standard described previously protocol (Chargui et al., 2007). In brief, cell culture-derived promastigote forms of Leishmania infantum MON-1 MHOM/FR/78/LEM75 served as antigen. Sera were screened at dilutions of 1:20 to 1:2560. An anti-immunoglobuline canine (anti IgG dog) coupled to Fluoline was used as conjugate. The threshold dilution for a positive test was 1:80. The high specificity of this test for screening the prevalence of CVL has been already confirmed in our previous study (Chargui et al., 2007).

IN VITRO CULTIVATION

Buffy coats were inoculated on blood agar base containing 10% rabbit blood and Gentamicin 40 mg/ml. Cultures were examined at weekly intervals for one month. Isoenzymatic identification was performed in our laboratory for positive cultures according to Rioux et al. (1990).

PCR

PCR reactions were performed as described previously (Chargui et al., 2007). Briefly, DNA extraction was carried out on buffy coat samples in lysis buffer (0.5% Tween 20, 0.5% Nonidet P40, 10 mM NaOH, 100 mM Tris HCl pH 7.6) and of Proteinase K (900 µg/ml). The samples were incubated at 56°C for two to 12 hours followed by phenol/chloroform extraction and ethanol precipitation. The PCR with primers LEI170R (5’-CGCGGTGCTGGACACAGGGTA-3’) and LEI170L (5’-CGCACACCTCGGTTCGGTGTG-3’), which targets a region of the SSU rRNA gene, was performed as described by Spanakos et al. (2002) and previously found to be more sensitive than PCR with R332/221 primers in the detection of Leishmania (Chargui et al., 2007). 10 µl of purified DNA sample or control was used for PCR reactions in a final volume of 50 µl containing, 1XPCR buffer, 1.5 mM MgCl2, 0.2 µM of each deoxy-nucleotide, 1.25 U of Taq DNA polymerase and 50 pmol of each primer. Reactions were cycled in an MJ Research thermocycler model PT-100 using the following conditions: an initial denaturation step at 94°C for 3 min, 40 cycles at 94°C for 30 s, 65°C for 30 s and 72°C for 1.5 min, and a final elongation step at 72°C for 10 min.

To control the quality of DNA extraction as well as the presence of possible reaction inhibitors, an internal control was used for each sample. It consisted of an amplification of the acidic ribosomal phosphoprotein fragment of houkeeping canine gene with PO3 and PO5 primers amplifying a 469 pb PCR product (Ashford et al., 1995). If the inhibition control was negative, a five-fold dilution of the DNA was applied for the subsequent PCR. Carryover contaminations were prevented by using separate rooms and materials for each step of the PCR (DNA extraction, preparation of PCR mixture and electrophoresis of PCR products), as well as decontamination procedures by UV exposure of consumables and materials and bleaching of materials and surfaces.

STATISTICAL ANALYSIS

Epi InfoTM 6.0 (CDC, Atlanta, GA, USA) was used for data statistical analysis by the χ2 test for the comparison between PCR, IFAT, and in vitro culture in the detection of CanL.

RESULTS

67 dogs were chosen randomly in El Alaa (Kairouan). All but one dog were mongrel and the other dog is Alsatian. The dog age ranges between one and 11 years with a mean of 3.4 years (47 males, 20 females). Some studied dogs presented signs evoking CanL (24 symptomatic dogs), while others did not (43 asymptomatic dogs). Major signs were lymph node enlargement in 16 dogs; loss of weight was observed in ten dogs, dermatological changes in nine, and onychogriphosis in four. The results of different methods used for the detection of CanL (in vitro culture, IFAT,
and PCR) performed on blood were given in Table I. Only, three dogs were found to be positive by all methods, five dogs were positive by IFAT and PCR, while eight dogs were positive only by PCR. Altogether, 16 dogs (20.9 % of the cases) were positive by PCR. Among the samples negative by PCR, one case of PCR inhibition was detected and was resolved by five-fold dilution and was negative. Eight dogs (11.9 %) were positive by IFAT with dilutions between 1/80 and 1/2560. Only three strains (4.5 %) were isolated by in vitro culture and were identified by isoenzymatic method as Leishmania infantum MON-1. Within positive cases, eight dogs (50 %) were symptomatic with two or more signs evoking CanL (loss of weight, onychogriphosis, lymph node, and spleen enlargement). The other infected dogs (50 %) were asymptomatic. The Leishmania DNA was detected in eight of symptomatic (33.3 %) and eight asymptomatic ones (18.6 %). Anti-Leishmania antibodies were detected in six of symptomatic (25 %) and two asymptomatic (4.6 %) dogs. Leishmania strains were isolated from three symptomatic dogs (4.5 %) by in vitro culture.

Since there is no gold standard for the biological detection of CanL in the presence of a hypersensitive method such as PCR (Lachaud et al., 2002; Chargui et al., 2005), the sensitivity of each technique was defined using the total number of samples positive with at least one method (Table II). Thus, the sensitivities of PCR, IFAT, and in vitro cultivation would be 100 %, 50 % and 18.75 %, respectively. PCR was found more sensitive than IFAT (p = 0.004) and in vitro culture (p < 10^-5). Moreover, infection was detected by one or more of the methods used in 33.3 % of symptomatic dogs and in 18.6 % of asymptomatic dogs.

### DISCUSSION

**DIAGNOSIS OF CANINE LEISHMANIASIS IN PERIPHERAL BLOOD**

Molecular (PCR), serological (IFAT), and parasitological (in vitro culture) methods were used in the present study to detect *Leishmania* infection in the blood of 67 dogs. In this study, we have chosen the peripheral blood to detect canine leishmaniasis. A based diagnosis test on blood is advantageous because samples can be obtained less invasively from patient (human and dog), relatively easy to process and it is the most used tissues in mass screening epidemiological studies. Other samples can yield excellent sensitivity (lymph node, bone marrow, skin or conjunctive biopsies) (Lachaud et al., 2002; Reale et al., 1999). However, they are impractical outside of a veterinary centre and cannot be used in field mass surveys. Moreover, the PCR chosen amplified genomic DNA fragment (PCR gDNA) and not a kinetoplastidic DNA (PCR kDNA) because of the artefacts which can be observed with PCR kDNA and rarely with PCR gDNA and because of the low positive predictive value of the PCR kDNA (Lachaud et al., 2002).

The sensitivity of PCR was found higher than that of IFAT (p = 0.004) and in vitro culture (p < 10^-5), which is in agreement with results found by other studies (Leontides et al., 2002; Oliva et al., 2006). The low sensitivity of in vitro culture observed in our study is in correlation with what is found in some studies (Berrahal et al., 1996, Fisa et al., 2001). However, other studies found sensitivity as high as that of PCR in dog blood (Iniesta et al., 2002) or in human blood (Kaouach et al., 2008). This difference can be due to the method used and the local conditions of in vitro culture. Altogether, canine leishmaniasis was observed in 16 dogs (20.9 %) using one or more methods. Within positive cases, 50 % were asymptomatic. Other studies have detected infection in asymptomatic dogs by serology.
and/or PCR (Lachaud et al., 2002; Oliva et al., 2006; Moreira et al., 2007).

The role of asymptomatic dogs in the transmission of the infection has been already confirmed (Dye, 1996). These dogs can develop the disease in many months or years (Dedet, 1999; Ferrer, 1999). Thus, to control the disease preventive measures should be taken against all infected dogs including symptomatic and asymptomatic ones after being detected by high sensitive methods as PCR. Isolated strains corresponded to *Leishmania infantum* MON-1. This confirms again the role of the dog as the only reservoir of the visceral form of human leishmaniasis in Tunisia (Haouas et al., 2007; Aoun et al., 2003; Bouratbine et al., 2005).

**Prevalence and state of CanL in Kairouan (central Tunisia)**

The prevalence of CanL in Kairouan, known as a reduced endemic area in Tunisia, was assessed in this study by different methods and was estimated to be of 20.9% using one or more of the method used, in correlation with the prevalence of CanL in the Mediterranean basin which ranges between 10 and 37% (Dereure et al., 1999). There are three zones within the Tunisian leishmaniasis focus according to Dedet et al. (1973): a strong endemicity zone corresponds to the sub-humid and the semi-arid stages (in the northern part of the country) with a prevalence of 5.6%, a zone of reduced endemicity in the arid stage (in the central part of Tunisia) with a prevalence of 1.6%, and a very low endemicity zone corresponding to saharan and the humid stage where the disease seems absent. In another more recent study (Ben Said et al., 1992), the prevalence was found to have increased in an arid region (Sousse) to 6%. In our previous study (Chargui et al., 2007), we also found an increase in endemicity in another arid region (Sfax) to 6%. However, in this study, we found that Kairouan, which is an arid region, supposed to be of very low endemicity 30 years ago (Dedet et al., 1973), had a prevalence as high as 20.9%. This result may be due to: i) the increase of the disease in this region which has not been studied since 1973 in correlation with the important number of cases of Human visceral leishmaniasis emerged recently (Ben Salah et al., 2000), and suggesting for a spread of the disease in the centre of Tunisia (Ayadi et al., 1991; Besbes et al., 1994; Ben Salah et al., 2000); ii) the prevalence was underestimated since all previous studies were conducted by serological methods, which, as we reported in this study, can not detect all infected dogs.

**Acknowledgements**

This study was carried out with the financial support of the Research Unit 99-UR/08-05. We thank the Regional Directors for Public Health and Culture. N. Chargui was the recipient of a grant from the Agence Universitaire de la Francophonie (AUF). We thank Dr Harrabi Imed (CHU of Farhat Hached, Sousse Tunisia) for statistical analysis.

**References**


Dedet J.P., Osman F.B., Chadi H., Crosset H. & Rioux J.A. Leishmaniasis in Tunisia. Sero-immunological survey about
the frequency of infestation (author’s transl.). *Annales de Parasitologie Humaine et Comparée*, 1973, 48, 653-660.


Spanakos G., Patsoula E., Kremastinou T., Saroglou G. & Vakalis N. Development of a PCR-based method for diag-