Summary:
Despite nearly 100 years of research and control efforts, malaria remains one of the most important infectious diseases. An efficient vaccine would be a powerful tool to reduce mortality and morbidity. Experimentally, induction of sterile immunity in humans after vaccination with attenuated sporozoites has been obtained. This observation has spurred the search for subunit vaccines that aim to reproduce this protection. As yet none of the current candidate subunit vaccines achieved complete protection reproducibly. This failure coupled to the recent advent of genetically modified Plasmodium parasites has led to a renewed interest in the use of live parasites for vaccination against malaria pre-erythrocytic stages. In this article, we review and discuss the recent developments in this field.

KEY WORDS: malaria, vaccine, live parasite.

Malaria remains one the deadliest diseases together with HIV and tuberculosis. Every year 200-500 million cases are recorded and some of them lead to one to 3 millions, mainly children in Africa (Brown, 2007). Although malaria is a major health problem in many tropical and sub-tropical countries, 20-50,000 cases of imported malaria also occur every year (Legros et al., 2007). Although the advent of DDT and chloroquine led to the belief that eradication was possible, the spread of parasites and insects resistant to the drugs and insecticides, has led to a resurgence of the parasite in economically disadvantaged countries (Molyneux, 2006). This worsening situation has called for the development of new control measures, of which vaccines have been a priority since the late 1970s. However, up to now, no vaccine formulation with sufficient efficacy against the malaria parasite has been developed (Renia et al., 2006). Reasons for these failure lie in part from the fact that the Plasmodium, the protozoan parasite responsible for the malaria, is a complex organism.

It life cycle involves two hosts, the insect vector and the intermediate mammalian host. The infection is initiated with the inoculation of sporozoites by the mosquito in the skin, from where they travel via the blood stream to the liver. The parasite undergoes an obligatory multiplicative stage in hepatocytes. These steps are known as the pre-erythrocytic (PE) stages and generally are completed within a few weeks. The resulting daughter cells, the merozoites, then invade red blood cells, where they multiply predominantly asexually every 24, 48 or 72 hours depending on the species. At various times during this phase, male and female gametocytes are generated, and if these are ingested by a mosquito, fertilisation occurs and the mosquito eventually becomes infective to another vertebrate host. The mosquito and tissue stages are relatively short, while the cyclical multiplication in the blood is by far the longest phase of the life cycle. The parasite adopts highly characteristic forms at the different stages, where overlapping and distinct repertoires of genes are expressed, as an adaptation to the different environment in which they have to survive.

THE GOLD STANDARD OF MALARIA PRE-ERYTHROCYTIC STAGE PROTECTION: IRRADIATED SPORozoITES

Use of radiation-attenuated sporozoites as vaccine was pioneered by Russell et al. (1942) using UV-attenuated
avian malaria sporozoites. They were able to induce sterile protection in chickens against a sporozoite challenge. This data were extended to mammalian malaria in rodent, monkey and human malaria (reviewed in Nussenzweig, 1981). In the *P. berghei*/mouse model, protection was only obtained after intravenous inoculations or irradiated mosquito bites (Spitalny & Nussenzweig, 1972; Kramer and Vanderberg, 1975). In studies using a limited number of human volunteers, repeated inoculations through mosquito bites with a total of at least a thousand irradiated infected mosquitoes were required to induce protection (Hoffman et al., 2002). However, large-scale generation of irradiated sporozoites was discarded for mass production since rearing and infection of millions of mosquitoes, combined with delivery issues, repeated inoculations with 1,000 or more irradiated mosquitoes were major limitations of this approach. However, workers at Sana-ria Inc. (Luke et al., 2003) re-invented this approach. They have developed protocols for mass rearing and infections of mosquitoes under axenic conditions. Large numbers of sporozoites are now generated and human clinical trials with *P. falciparum* sporozoites are planned.

Although the irradiated sporozoites are the form inoculated by the mosquito, the induction of protective responses depends on the presence of viable and developmentally arrested liver stage parasites, generally as trophozoites or very early schizonts (Mellouk et al., 1990; Suhrbier et al., 1990, Scheller et al., 1995, Silvie et al., 2002). Over-irradiation (20,000 rads instead of 12-15,000 rads) or inactivation by heat or paraformaldehyde treatment did not induce protection (Spitalny & Nussenzweig, 1972; Mellouk et al., 1990). In addition, intrasplenic immunization with a low number of viable hepatocytes infected with irradiated sporozoites induced protection (Renia et al., 1994). Maintenance of protection also depends on the presence of irradiated sporozoites in the liver since primachine treatment which eliminates the intrahepatic parasite abrogates protection (Scheller et al., 1995). The mechanisms of protection have been principally unveiled in the mouse model and have revealed a high degree of complexity. Antibodies, CD4+ and CD8+ T cells, IFN-γ and nitric oxide were found to be involved in various degrees depending on the parasite/host combinations (Drulhe et al., 1998; Doolan & Hoffman, 2000). The immunity induced is strictly stage-specific since immunised mice remain fully susceptible to infected red blood cells (Nussenzweig et al., 1969), and it was considered that the same applies to immunised humans.

Genetically altered sporozoites

The most exciting and promising recent advances has been made possible by the advent of routine genetic manipulation of *Plasmodium* together with the sequencing of the malaria parasite genome (Gardner et al., 2002; Carlton et al., 2002, Hall et al.; 2005), transcriptomic (Kappe et al., 2001; Kaiser et al., 2004; Hall et al., 2005), and proteomic analyses (Florens et al., 2002, Hall et al., 2005). In a series of elegant studies, a number of genes expressed by the sporozoite in the developing liver stages have been identified. Inactivation of the genes coding for the proteins IUS3, IUS4, or P36p, P52 and P36 (Mueller et al., 2005a, 2005b; Van Dijk et al., 2005; Labaied et al., 2007; Jobe et al., 2007) in *P. berghei* or *P. yoelii* resulted in parasites that could not complete liver stage development. These genetically altered sporozoites were recognised to reproduce the phenotype of irradiated sporozoites. Mice immunised intravenously with the different genetically altered sporozoites were fully protected against a challenge with normal sporozoites. In contrast to irradiated sporozoites, p36-deficient sporozoites could induce protection even after immunisation intramuscularly, subcutaneously or intradermally (Douradinhia et al., 2007). Recent studies using the *P. yoelii* and the *P. berghei* models have shown that the protection was mediated by CD8+ T cells (Mueller et al., 2007, Tarun et al., 2007) and IFN-γ (Mueller et al., 2007). Depending on the deficient *P. yoelii* parasite (IUS3– or IUS4–), intrahepatic persistence was not necessary for maintenance of protection (Mueller et al., 2007, Tarun et al., 2007, Jobe et al., 2007). Interestingly, immunisation with *P. berghei* p36 induced a cross-sterile protection against *P. yoelii* (Douradinhia et al., 2007).

One potential major limitation of this approach is the possible occurrence of breakthrough infections. This has been observed for the IUS-4 and the p36- sporozoites (Mueller et al., 2005; van Dijk et al., 2005). To circumvent this problem, deficient parasites for two antigens IUS3 and IUS4 (Jobe et al., 2007) or P52 and P36 (Labaied et al., 2007) have been created and displayed no such events. These parasites were also very effective in inducing sterile protection.

Live sporozoite immunization under chloroquine treatment

In the rodent malaria model, experiments have been performed to assess the effects of immunisation with normal sporozoites (Beaudoin et al., 1977; Orjih et al., 1982). An anti-malarial drug, chloroquine, capable of suppressing the blood stage of the infection but not the development of the PE parasite was used to ensure that immune responses were mainly directed against the PE stages. Under these conditions, single or multiple immunisations with normal sporozoites were shown to confer sterile protection. (Beloule et al., 2004). Protection was shown to mainly depend on both CD4+ and CD8+ T cells. As for the protection induced by
immunisation with irradiated sporozoites, protection was dependent on the presence of liver parasites since treatment with primaquine, a drug that eliminates hepatic parasites, during immunisation abrogated the acquisition of protection. Interestingly, protection was directed not only against the liver stages but also against the blood stage parasites. This is one of the first demonstrations of the experimental induction of cross-stage immunity. One of the main reasons as to why these differences with irradiated sporozoite-induced immune responses is that the host would have been exposed to a much wider (and more natural) liver stage antigenic repertoire through natural infections than through the arrested hepatic forms resulting from irradiated sporozoite or genetically deficient parasite inoculation. Preliminary experiments indicate that vaccination with one line of *P. yoelii* confers sterile protection against challenge with a different line, though not against another species such as *P. berghei* (unpublished observations). Indirect epidemiological observations have suggested that this approach might be effective in humans. Nigerian children followed-up over six months after cessation of a period of one to two years under chloroquine prophylaxis, revealed that the prevalence of *P. falciparum* and *P. malariae* were substantially reduced as compared to that in control “untreated” children (Bradley Moore et al., 1985).

CONCLUSIONS

The main objective for a malaria pre-erythrocytic vaccine is ideally to prevent infection. 25 years after the identification of the first pre-erythrocytic antigen, the parasite still eludes all efforts to eliminate it by immunisation with sub-unit vaccines. Of many sub-unit formulations tested so far, only one, the RTS, S, a hybrid recombinant antigen coding for the Hepatitis B S antigen and a large fragment of the circumsporozoite protein, has shown limited efficacy (Alonso et al., 2004; Snounou et al., 2005). This relative failure of the subunit vaccine approach is in part due to a lack of sufficient knowledge of the immune mechanisms that are effective against *Plasmodium*, and the parasite antigens involved in protection. Vaccine development has thus been conducted in a rather semi-empirical manner and without the benefit of accepted immune correlates of protection that would have helped to improve experimental formulations. The availability of the genome sequences and the possibility to generate genetically manipulated parasites will undoubtedly help in identifying numerous new potential vaccine candidates. However, selecting those that will be appropriate to incorporate in a vaccine would still require major advances in fundamental knowledge of the biology, and the immunology of malaria pre-erythrocytic stages.

To date, the use of whole live parasites, attenuated or normal, not only offers the only means to induce sterile protection, but also provides the opportunity to obtain invaluable materials to dissect effective immune mechanisms.

ACKNOWLEDGEMENTS

LR is supported by the Singapore Immunology Network of A*STAR (Agency for Science, Technology and Research), Singapore. I deeply thank Lisa Fong Poh Ng for critical reading and English editing of the manuscript.

REFERENCES

