Helminths in Mesaspis monticola (Squamata: Anguidae) from Costa Rica, with the description of a new species of Entomelas (Nematoda: Rhabdiasidae) and a new species of Skrjabinodon (Nematoda: Pharyngodonidae)

BURSEY C.R.* & GOLDBERG S.R.

Summary:
Entomelas duellmani n. sp. (Rhabdiasidae: Rhabdiasidae) from the lungs and Skrjabinodon cartagoensis n. sp. (Oxyurida: Pharyngodonidae) from the intestines of Mesaspis monticola (Sauria: Anguidae) are described and illustrated. *E. duellmani* is the sixth species assigned to the genus and is the third species described from the Western Hemisphere. It is easily separated from other neotropical species in the genus by pre-equatorial position of its vulva. *Skrjabinodon cartagoensis* is the 24th species assigned to the genus and differs from other neotropical species in the genus by tail morphology.

Key Words: Nematoda, Entomelas, Rhabdiasidae, Skrjabinodon, Pharyngodonidae, new taxa, Mesaspis monticola, Anguidae, Costa Rica.

Introduction

Mesaspis monticola (Gope, 1877) occurs at elevations of 1,800-3,800 m in humid areas of montane and subalpine forests of the cordilleras of Costa Rica and extreme western Panama (Savage, 2002). To our knowledge, no helminths have been reported from this species. Five species of *Entomelas* Traassos, 1930 are currently recognized, two from the Western Hemisphere (Table I); 23 species of *Skrjabinodon* Inglis, 1968 are currently recognized, four from the Western Hemisphere (Table II). The purpose of this paper is to describe the sixth species assigned to *Entomelas*, the twenty-fourth species assigned to *Skrjabinodon*, and to provide the initial helminth list for *M. monticola*.

Materials and Methods

Sixteen *Mesaspis monticola* were borrowed from the herpetology collection of the Los Angeles County Museum of Natural History (LACM 148210, 148226, 148226, 148234, 148266, 148273, 148279, 148287, 148288, 148290-148296, 148305) and examined for helminths. The lizards had been collected in Cartago Province, Costa Rica between May 1959 and July 1963 and were originally fixed in 10% formalin, then stored in 70% ethanol. The abdominal cavity of each lizard was opened and the gastrointestinal tract was removed, opened longitudinally, and searched for helminths using a dissecting microscope. The coelom, lungs and bladder were also searched. Each helminth (fixed *in situ*) was cleared in glycerol on a glass slide and identified with a light microscope. Illustrations were made with the aid of a microprojector. Measurements given in micrometers unless otherwise indicated as mean and ± 1 SD with range in parentheses.

Results

Twelve of 16 (75%) lizards were found to harbor helminths: five species of Nematoda, *Cosmocercoides variabilis* (Harwood, 1930), a new species of *Entomelas*, *Oswaldocruza* sp., *Physaloptera retusa* Rudolph, 1819, a new species of *Skrjabinodon*, and one species of Acanthocephala, cystacanthus assignable to the family Oligacanthorhynchidae. Site of infection, number found, prevalence, abundance, mean intensity, range, and accession numbers for these helminths are given in Table III.
DESCRIPTIONS

ENTOMELAS DUELLMANI n. sp. (Figs 1-6)

Holotype parthenogenic female: slender worm, amber in color, with truncate anterior extremity containing obvious, large buccal cavity and conical posterior extremity. Length 3.1 mm, width at vulva 175. Buccal cavity subspherical in lateral view, 35 wide, 27 deep, continuing as a conical depression into anterior portion of esophagus. Anterior wall of buccal cavity thin, surrounding round mouth, 22 in diameter, and supporting two dorsal, two ventral low cuticular papillae and two lateral amphids. Lateral and posterior walls of buccal cavity of even thickness, heavily sclerotized; sclerotized tissue continuing into muscular portion of esophagus. Posterior wall of buccal cavity with six onchia, four in length. Esophagus club-shaped, 460 in length, 75 at greatest diameter; anterior muscular portion 210 in length, posterior glandular portion 260 in length. Nerve ring, deirids, and excretory pore, 237, 253, and 281 from anterior end, respectively. Vulva, pre-equatorial, salient, 1.50 mm from anterior end (48 % of body length). Vagina a short flattened cavity. Uteri amphidelphic. Oviducts short; ovaries long, folding back over uteri. Eggs few in number, 61 ± 7 (54-72) long, 35 ± 4 (30-42) wide, uncleaved. Tail 275 long, conical, tapering to a blunt end.

Paratype parthenogenic females: length 2.96 ± 0.15 mm (2.82-3.33 mm), width at vulva 151± 14 (138-175). Buccal cavity 35 ± 3 (30-39) wide, 23 ± 3 (18-27) deep; onchia, 3-6 in length. Esophagus club-shaped, 430 ± 31 (375-463) in length, 66 ± 7 (54-75) at greatest diameter; anterior muscular portion 204 ± 19 (175-238) in length, posterior glandular portion 226 ± 30 (175-275) in length. Nerve ring, deirids, and excretory pore, 216 ± 19 (187-250), 232 ± 26 (206-293), and 270 ± 19 (241-304) from anterior end, respectively. Vulva 1.42 ± 0.08 (1.34-1.60) from anterior end (48 % of body length). Eggs few in number, 61 ± 7 (54-72) long, 35 ± 4 (30-42) wide, uncleaved. Tail 226 ± 29 (188-275) long, conical, tapering to a blunt end.

TAXONOMIC SUMMARY

Type host: *Mesaspis monticola* (Cope, 1877); symbiotype, LACM 148226, collected 21 May 1959.

Type locality: Volcán Irazú (9° 58' N, 83° 52' W), Cartago Province, Costa Rica.

Site of infection: lung.
Table II. – Geographic distribution and selected characters of species of *Skrjabinodon*.

<table>
<thead>
<tr>
<th>Realm</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papillae pattern*</td>
<td>Spicule (µm)</td>
</tr>
<tr>
<td>Australian</td>
<td>S. leristae Mawson, 1971</td>
<td>2-2-2</td>
</tr>
<tr>
<td></td>
<td>S. parasmythi Mawson, 1971</td>
<td>2-2-2</td>
</tr>
<tr>
<td></td>
<td>S. plankei Bursey & Goldberg, 1999</td>
<td>2-2-2</td>
</tr>
<tr>
<td></td>
<td>S. poiciklandri Ainsworth, 1990</td>
<td>2-3-2</td>
</tr>
<tr>
<td></td>
<td>S. smythi Angel & Mawson, 1968</td>
<td>2-2-2</td>
</tr>
<tr>
<td></td>
<td>S. trimorphi Ainsworth, 1990</td>
<td>2-3-2</td>
</tr>
<tr>
<td>Ethiopian</td>
<td>S. dossae (Caballero, 1968) Schmidt & Kuntz, 1972</td>
<td>2-2-2</td>
</tr>
<tr>
<td></td>
<td>S. marehayae (Sandground, 1956) Inglis, 1968</td>
<td>2-3-2</td>
</tr>
<tr>
<td></td>
<td>S. mabuiensis (Malan, 1939) Inglis, 1968</td>
<td>2-2-2</td>
</tr>
<tr>
<td>Nearctic</td>
<td>S. cricosaurae Barus & Coy Otero, 1974</td>
<td>2-2-2</td>
</tr>
<tr>
<td>Neotropical</td>
<td>S. beliocotai Vicente, Vrbradic, Muniz-Pereira & Pinto, 2000</td>
<td>2-2-2</td>
</tr>
<tr>
<td></td>
<td>S. scelpoart (Caballero, 1938) Inglis, 1968</td>
<td>2-2-2</td>
</tr>
<tr>
<td></td>
<td>S. spinosulus Vicente, Vrbradic, Rocha & Pinto, 2002</td>
<td>2-2-2</td>
</tr>
<tr>
<td></td>
<td>S. carrasgensis n. sp.</td>
<td>2-2-2</td>
</tr>
<tr>
<td>Oriental</td>
<td>S. apapillosus (Koo, 1938) Inglis, 1968</td>
<td>0-0-0</td>
</tr>
<tr>
<td>Palaeartic</td>
<td>S. alcarrusiensis Lafuente & Roca, 1995</td>
<td>2-3-2</td>
</tr>
<tr>
<td></td>
<td>S. canarriensis (Solera-Puetas, Zapatero-Ramos, Castano-Fernandez, & Carrera-Moro, 1987) Homero & Roca, 1992</td>
<td>2-3-2</td>
</tr>
<tr>
<td></td>
<td>S. mascomai Roca, 1985</td>
<td>2-2-2</td>
</tr>
<tr>
<td></td>
<td>S. meliiinae (Galvante, 1948) Specian & Uhbelaker, 1974</td>
<td>2-4-2</td>
</tr>
</tbody>
</table>

* Precloacal-postcloacal-base of tail.

Table II. – Geographic distribution and selected characters of species of *Skrjabinodon*.
Type specimens: holotype, parthenogenic female, United States National Parasite Collection (USNPC), Beltsville, Maryland, USNPC 94904; paratypes, USNPC 94905.

Etymology: the species is named for William E. Duellman, University of Kansas, Lawrence, Kansas, in recognition of his lifetime of study of Neotropical amphibians and reptiles.

Remarks

Baker (1980) redescribed Entomelas entomelas (Dujardin, 1845) Travassos, 1930 based on specimens from the European anguid lizards Anguis fragilis Linnaeus, 1758 and Pseudopoda podus (Pallas, 1775) and synonymized E. dujardini (Maupas, 1916) Travassos, 1930, Entomelas kazachstanika Sharpilo & Vakker, 1972 and Hexadontophorus ophsauri Kreis, 1939 with E. entomelas. In the same paper, Baker (1980) described E. sylvestris from specimens taken from the agamid lizards Oto- cryptis wiegmanni Wagler, 1830 and Calotes nigrilabi- bris Ota & Hikida, 1991 from Sri Lanka and also reassigned Kurilonema markovi Szczerek & Sharpilo, 1969 to Entomelas stating that the lack of onchia was an insufficient reason to erect a genus. Later, Baker (1982) described E. sylvestris Baker, 1982 from specimens in the microhylid frog Breviceps sylvestris FitzSimons, 1930 collected in South Africa. More recently, Martínez-Salazar & León-Régnagon (2005) described two additional species Entomelas campbelli Martínez-Salazar & León-Régnagon, 2005 from the lizards of the anapid lizards Mesaspis gadovii (Bouleenger, 1913) and Barisia imbricata (Wiegmann, 1828) and Entomelas florestillei Martínez-Salazar & León-Régnagon, 2005 from the lizards of B. imbricata, Barisia berrerae Zaldivar-Riveron & Nieto-Montes de Oca, 2002 and Mesaspis viridiflava (Boucourt, 1873), all from Mexico, to bring the number of recognized species to five. Kuzmin & Sharpilo (2002) redescribed Kurilonema markovi from specimens taken from the scincid lizard Plestiodon laticutatus Hallowell, 1861 collected on Kunashir Island, Kuril Archipelago, Russia, and in disagreement with Baker's (1980) reassignment reestablished the original designation. The key character for assigning the species by Kuzmin & Sharpilo (2002) to the genus Kurilonema was the presence of a large subspherical buccal cavity with dense walls of uniform thickness, onchia absent. Entomelas duellmani n. sp. does possess onchia on the posterior wall of the buccal cavity and this character along with the presence of a large subspherical buccal cavity with dense walls of uniform thickness allows its assignment to Entomelas. Ento- melas duellmani n. sp., the sixth species assigned to the genus and the third from the Western Hemisphere, is separated from the other species (Table I) by location of vulva, number of cephalic papillae, and shape of tail.

SKRJABINODON CARTAGOENSIS N. SP. (Figs 7-12)

Diagnosis: Oxyurida: Pharyngodonidae Travassos, 1919, Skrjabinodon Inglis, 1968. Small, white, cylindrical nematodes with tapering extremities. Cuticle with fine transverse striation along entire body. Mouth bounded by three lips, each with two low papillae, prominent lateral amphids present. Lateral alae present in males, absent in females. Female excretory pore and vulva posterior to esophageal bulb. In males, caudal alae absent, paired caudal papillae present. Holotype male: length 1.2 mm, excluding filiform tail; width at level of excretory pore 220. Esophageal corpus 141, isthmus 28, bulb 48 in length, 54 in width. Nerve ring 123 and excretory pore 460 from anterior end, respectively. Lateral alae beginning midway between lips and nerve ring becoming approximately 30 in width before terminating slightly anterior to first pair of caudal papillae. Spicule 72 in length. Cloaca and associated papillae slightly raised from body surface but not on distinct cone. Cloacal lips smooth and unadorned. Caudal alae absent, three pairs of sessile papillae, one pair precloacal, one pair postcloacal, third pair occurring on base of tail filament. Third pair of caudal papillae 54 posterior to postcloacal pair. Smooth filiform tail filament extending 240 beyond third pair of

Table III. – Site of infection, number of individuals, prevalence, abundance, mean and range of infection for six species of helminths in Mesaspis monticola.

<table>
<thead>
<tr>
<th>Nematoda</th>
<th>Site of infection</th>
<th>Number</th>
<th>Prevalence (%)</th>
<th>Density Mean ± SD</th>
<th>Range</th>
<th>USNPC Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmocercoides variabilis</td>
<td>Stomach</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>94909</td>
</tr>
<tr>
<td>Entomelas duellmani n. sp.</td>
<td>Lung</td>
<td>59</td>
<td>31</td>
<td>11.8 ± 9.6</td>
<td>2-24</td>
<td>94910</td>
</tr>
<tr>
<td>Oswaldocraziella</td>
<td>Small intestine</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>94911</td>
</tr>
<tr>
<td>Physaloptera retusa</td>
<td>Stomach</td>
<td>23</td>
<td>31</td>
<td>4.6 ± 3.5</td>
<td>1-10</td>
<td>94912</td>
</tr>
<tr>
<td>Skrjabinodon cartagoensis n. sp.</td>
<td>Small, large intestines</td>
<td>38</td>
<td>4</td>
<td>9.5 ± 1.9</td>
<td>8-12</td>
<td>94913</td>
</tr>
</tbody>
</table>

Type specimens: holotype, parthenogenic female, United States National Parasite Collection (USNPC), Beltsville, Maryland, USNPC 94904; paratypes, USNPC 94905.

Etymology: the species is named for William E. Duellman, University of Kansas, Lawrence, Kansas, in recognition of his lifetime of study of Neotropical amphibians and reptiles.

Remarks

Baker (1980) redescribed Entomelas entomelas (Dujardin, 1845) Travassos, 1930 based on specimens from the European anguid lizards Anguis fragilis Linnaeus, 1758 and Pseudopoda podus (Pallas, 1775) and synonymized E. dujardini (Maupas, 1916) Travassos, 1930, Entomelas kazachstanika Sharpilo & Vakker, 1972 and Hexadontophorus ophsauri Kreis, 1939 with E. entomelas. In the same paper, Baker (1980) described E. sylvestris from specimens taken from the agamid lizards Otocryptis wiegmanni Wagler, 1830 and Calotes nigrilabris Ota & Hikida, 1991 from Sri Lanka and also reassigned Kurilonema markovi Szczerek & Sharpilo, 1969 to Entomelas stating that the lack of onchia was an insufficient reason to erect a genus. Later, Baker (1982) described E. sylvestris Baker, 1982 from specimens in the microhylid frog Breviceps sylvestris FitzSimons, 1930 collected in South Africa. More recently, Martínez-Salazar & León-Régnagon (2005) described two additional species Entomelas campbelli Martínez-Salazar & León-Régnagon, 2005 from the lizards of the anapid lizards Mesaspis gadovii (Bouleenger, 1913) and Barisia imbricata (Wiegmann, 1828) and Entomelas florestillei Martínez-Salazar & León-Régnagon, 2005 from the lizards of B. imbricata, Barisia berrerae Zaldivar-Riveron & Nieto-Montes de Oca, 2002 and Mesaspis viridiflava (Boucourt, 1873), all from Mexico, to bring the number of recognized species to five. Kuzmin & Sharpilo (2002) redescribed Kurilonema markovi from specimens taken from the scincid lizard Plestiodon laticutatus Hallowell, 1861 collected on Kunashir Island, Kuril Archipelago, Russia, and in disagreement with Baker's (1980) reassignment reestablished the original designation. The key character for assigning the species by Kuzmin & Sharpilo (2002) to the genus Kurilonema was the presence of a large subspherical buccal cavity with dense walls of uniform thickness, onchia absent. Entomelas duellmani n. sp. does possess onchia on the posterior wall of the buccal cavity and this character along with the presence of a large subspherical buccal cavity with dense walls of uniform thickness allows its assignment to Entomelas. Entomelas duellmani n. sp., the sixth species assigned to the genus and the third from the Western Hemisphere, is separated from the other species (Table I) by location of vulva, number of cephalic papillae, and shape of tail.

SKRJABINODON CARTAGOENSIS N. SP. (Figs 7-12)

Diagnosis: Oxyurida: Pharyngodonidae Travassos, 1919, Skrjabinodon Inglis, 1968. Small, white, cylindrical nematodes with tapering extremities. Cuticle with fine transverse striation along entire body. Mouth bounded by three lips, each with two low papillae, prominent lateral amphids present. Lateral alae present in males, absent in females. Female excretory pore and vulva posterior to esophageal bulb. In males, caudal alae absent, paired caudal papillae present. Holotype male: length 1.2 mm, excluding filiform tail; width at level of excretory pore 220. Esophageal corpus 141, isthmus 28, bulb 48 in length, 54 in width. Nerve ring 123 and excretory pore 460 from anterior end, respectively. Lateral alae beginning midway between lips and nerve ring becoming approximately 30 in width before terminating slightly anterior to first pair of caudal papillae. Spicule 72 in length. Cloaca and associated papillae slightly raised from body surface but not on distinct cone. Cloacal lips smooth and unadorned. Caudal alae absent, three pairs of sessile papillae, one pair precloacal, one pair postcloacal, third pair occurring on base of tail filament. Third pair of caudal papillae 54 posterior to postcloacal pair. Smooth filiform tail filament extending 240 beyond third pair of
Figs 1-6. – Entomelas duellmani n. sp. Fig. 1: Parthenogenic female, entire, lateral view. Fig. 2: Parthenogenic female, en face view. Fig. 3: Optical section, posterior surface of buccal cavity. Fig. 4: Parthenogenic female, anterior end, dorsal view. Fig. 5: Vulvar region, lateral view. Fig. 6: Parthenogenic female, posterior end, lateral view.
caudal papillae. Single tubular testis reflexed posterior to excretory pore.

Paratype male (2): length 1.20 ± 0.06 mm (1.15-1.28 mm); width at level of excretory pore 216 ± 14 (200-225). Esophageal corpus 134 ± 7 (126-141), isthmus 28 ± 2 (27-30), bulb 45 ± 5 (39-48) in length, 51 ± 3 (48-54) in width. Nerve ring 120 ± 6 (114-123) and excretory pore 454 ± 18 (438-475) from anterior end, respectively. Spicule 76 ± 3 (72-78). Third pair of caudal papillae 57 ± 3 (54-60) posterior to postcloacal pair. Tail filament extending 274 ± 36 (240-312) beyond third pair of caudal papillae.

Allotype female: length 3.8 mm, width at level of vulva 255. Esophageal corpus 270, isthmus 30, bulb 75 long, 82 wide. Nerve ring 120, excretory pore 510, vulva 555 from anterior end, respectively. Thick walled muscular ovjector extending approximately 375, continuing as thin-walled vagina 150 in length before joining two uteri, one directed anteriorly and the other posteriorly. Uterus and ovarian coils reflexed in vulvar region. Eggs elongate ovoid, 152 in length, 36 wide, poles unadorned. Development to morula stage at deposition. Anus 555 from posterior end, the terminal region of the body developed as a stiff spike 120 in length.

Paratype female (allotype 9): length 4.93 ± 1.00 mm (3.71-6.40), width at level of vulva 295 ± 24 (250-325). Esophageal corpus 250 ± 14 (228-270), isthmus 33 ± 4
(24–36), bulb 74 ± 6 (60–81) long, 79 ± 5 (72–90) wide. Nerve ring 110 ± 10 (90–120), excretory pore 518 ± 107 (450–750), vulva 560 ± 113 (450–800) from anterior end, respectively. Eggs 152 ± 3 (147–156) in length, 34 ± 2 (30–36) wide, poles unadorned. Anus 750 ± 91 (550–875) from posterior end, the terminal region of the body developed as a stiff spike 142 ± 23 (120–175) in length.

Taxonomic summary

Type host: *Mesaspis monticola* (Cope, 1877); symbiotype, LACM 148226, collected 21 May 1959.
Type locality: Volcán Irazú (9° 58’ N, 83° 52’ W), Cartago Province, Costa Rica.
Site of infection: intestine.
Type specimens: holotype male, USNPC 94906; allotype female, USNPC 94907; paratypes, two male, nine female, USNPC 94908.
Etymology: the new species is named after its locality of occurrence, Cartago Province, Costa Rica.

Remarks

Skrjabinodon species are common parasites found in the intestines of various lizards (Table II). *Skrjabinodon cartagoensis* belongs to the group of species in which males possess a spicule and smooth tail filament, namely, *S. alcaraziensis*, *S. canariensis*, *S. cricosaurae*, *S. mabuyae*, *S. mascomai*, *S. medinae*, *S. scelopori*, *S. schikhobalovi* and *S. spinosulus*. Of these, females of *S. cricosaurae* and *S. mabuyae* have eggs with truncated poles; *S. mascomai* and *S. scelopori* have eggs with knobs at each pole; *S. alcaraziensis*, *S. canariensis*, *S. cartagoensis*, *S. medinae*, *S. schikhobalovi* and *S. spinosulus* have elongate eggs with unadorned poles. Females of *S. alcaraziensis*, *S. medinae* and *S. spinosulus* have filiform tails; *S. schikhobalovi* has a long inflexible tail, *S. canariensis* a short, spined tail spike, and *S. cartagoensis* has a short smooth spike.

Discussion

With the exception of *E. duellmani* n. sp. and *S. cartagoensis* n. sp., none of the helminths found in this study (Table III) was unique to *M. monticola*. *Mesaspis monticola* is a newly recognized host for *Physaloptera retusa* and acanthocephalan cystacanth; the status of *Cosmocercoides variabilis* and *Ostalocruzia* sp. is more problematic. *Cosmocercoides variabilis* has been reported from salamanders, frogs, lizards, snakes and turtles (McAllister & Bursey, 2004). Some uncertainty exists for its hosts because of confusion between *C. variabilis* and *C. dukae*, a molluscan parasite. Vanderburgh & Anderson (1987) demonstrated that the two species are distinct: the major difference in morphology for the two species is the number of rosette papillae in the male, *C. dukae* with 12 pairs, *C. variabilis* with 14 to 20 pairs. The single male specimen found in this study was assigned to *C. variabilis* because it possessed 16 pairs of rosette papillae. Previous reports indicate the typical location for *C. variabilis* to be the intestine, most often the large intestine. Because the single specimen of *C. variabilis* found was in the stomach and because *M. monticola* is known to eat juvenile salamanders (Savage, 2002), we are reluctant to consider *M. monticola* a host for *C. variabilis*. Until more data becomes available, we are inclined to consider this occurrence to be an artifact of diet.

Because we had only the posterior half of a male *Ostalocruzia*, Type II bursa, it was not possible to assign it to a species. Of the 22 Neotropical species of *Ostalocruzia* (Ben Slimane et al., 1996; Bursey & Goldberg, 2004), nine have a Type II bursa: *O. bonsi* Ben Slimane & Durette-Desset, 1993 from plethodontid salamanders of Ecuador; *O. dloubyi* Ben Slimane & Durette-Desset, 1995, from bufonids of Brazil; *O. lescurei* Ben Slimane & Durette-Desset, 1996, from bufonids of Guyana; *O. mazzai* Travassos, 1935 from bufonids of Brazil and Ecuador; *O. peruensis* Ben Slimane, Verhaagh & Durette-Desset, 1995, from iguanid lizards of Peru; *O. proencai* Ben Slimane & Durette-Desset, 1995, from bufonid and leptodactylid anurans of Paraguay; *O. touzeti* Ben Slimane & Durette-Desset, 1993, from leptodactylids of Ecuador; *O. vauberti* Ben Slimane & Durette-Desset, 1993 from leptodactylids of Ecuador; and *O. venezuelensis* Ben Slimane, Guerrero & Durette-Desset, 1996, from bufonids of Venezuela. Of the nine species listed above, only *O. peruensis* has been reported from lizards, thus we are inclined to also consider the presence of this helminth as an artifact of diet. *Physaloptera retusa* is a common lizard stomach worm; Bursey et al. (2005) have listed 55 hosts for the species. To that list, *M. monticola* should be added. Species of *Physaloptera* have an indirect life cycle; infection is attained by the injection of infected insects (Anderson, 2000). Oligacanthorhynchid acanthocephalans are typically parasites of mammals; to our knowledge no species reaches maturity in reptiles; but cystacanths are frequently found embedded in tissues. Species of acanthocephalans require an arthropod host (Schmidt, 1985). Bolette (1997) suggested that reptiles may serve as paratenic hosts.

Acknowledgements

Peggyl Firth prepared the illustrations constituting Figs 1-12; Amanda Woolsey assisted with dissections. The 16 *Mesaspis monticola* examined in this study are part of the Costa Rica Expeditions col-
lection assembled by Jay M. Savage, his associates and students and donated to the Natural History Museum of Los Angeles County.

REFERENCES

ANGEL L.M. & MAWSON P.M. Helminths from some lizards mostly from South Australia. Transactions of the Royal Society of South Australia, 1968, 92, 59-72.

BARUS V. & COY OTERO A. Nematodes of the genera Spauligodon, Skrjabinodon, and Pharyngodon (Oxyurida) parasitizing Cuban lizards. Vestnik Ceskoslovenské Spolecnosti Zoologike, 1974, 38, 1-12.

Bolette D.P. Oligancanthorhynchidae cystacanths (Acanthocephala) in a long-nosed snake, Rhinobothrius leucostoma leucostoma (Colu briidae) and a Mojave rattlesnake, Crotalus atrox atrox (Viperidae) from Maricopa County, Arizona. Southwestern Naturalist, 1997, 42, 232-236.

BURSEY C.R. & GOLDBERG S.R. Cosmocerca vrichradici n. sp. (Ascaridida: Cosmocercidae, Osvaldocrinia vitti n. sp. (Strongylida: Molinoidae), and other helminths from Prionodactylus eigenmanni and Prionodactylus osbaghnesi (Sauria: Gymnophthalmidae) from Brazil and Ecuador. Journal of Parasitology, 2004, 90, 140-145.

BURSEY C.R., GOLDBERG S.R. & PARMELEE J.R. Gastrointestinal helminths from 13 species of lizards from Reserva Cuzco Amazonicño, Peru. Comparative Parasitology, 2005, 72, 50-68.

HORNERO M.J. & ROCA V. Redescription of Skrjabinodon mediae (Garcia-Calvente, 1948) (Nematoda: Pharyngodonidae) from the cloaca of Podarcis pityusensis (Bosca, 1883) (Sauria: Lacertidae) of the Balearic Islands (Spain). Systematic Parasitology, 1992, 23, 31-35.

KUZMIN Y.I. & SHARPILO V.P. Rare and locally distributed helminth species of Palaeartic: Kurilsonema markovi (Nematoda, Rhabdiasidae), the lung parasite of the Japanese five-lined skink, Eumeces laticinctus (Reptilia, Sauria, Scincidae). Vestnik Zoologii, 2002, 36, 61-64.

LAFUENTE M. & ROCA V. Description of Skrjabinodon alcaraensis sp. n. (Nematoda: Pharyngodonidae), a parasite of Algyroides marchi (Sauria: Lacertidae). Folia Parasitologica, 1995, 42, 130-134.

SANDGROUND J. H. Reports on the scientific results of an expedition to the rain forest regions in eastern Africa. VI. Nema-

Reçu le 2 janvier 2006
Accepté le 28 avril 2006