A NEW SPECIES OF PARASITIC MITES OF THE GENUS SYRINGOPHILOIDUS KETHLEY 1970 (ACARI: SYRINGOPHILIDAE) FROM THE BARN SWALLOW HIRUNDO RUSTICA LINNAEUS, 1758

SKORACKI M.*, MÖLLER A.P.** & TRYJANOWSKI P.***

Summary:
A new quill mite species Syringophiloidus hirundinis (Acari: Syringophilidae] is described from the Barn Swallow Hirundo rustica. The species Syringophiloidus hirundinis had a prevalence of 17.1% in the two outermost tail feathers (N = 208 adult Barn Swallows) during the breeding season of the Barn Swallow host. Intensity of infestation was 9.7 adult mites per pair of infested tail feathers. The sex ratio was highly biased towards females, with only 7.5% of all individuals being males (20:3).

KEY WORDS: Acari, Syringophilidae, ectoparasites, quill mites, Barn Swallow, Hirundo rustica, Syringophiloidus hirundinis sp. n.

INTRODUCTION
The fauna of Syringophilidae mites is insufficiently investigated. To date, the genus Syringophiloidus includes 10 described species from two orders of avian hosts: Passeriformes and Apodiformes (Kethley, 1970; Chirov & Kravtsova, 1995; Bochkov & Mironov, 1998; Fain et al., 2000, Bochkov, 2001; Skoracki et al., 2001).

In the present paper we describe a new species of the genus Syringophiloidus associated with the Barn Swallow Hirundo rustica (Aves: Hirundinidae). The biology and ecology, including parasites, of the Barn Swallow are well known (Moller, 1994). Several species of parasites have been documented, including mites on feathers and in nests (summary in Moller, 1994).

The nomenclature of idiosomal setae is based on Fain (1979) in the version modified for the family Syringophilidae (Bochkov & Mironov, 1998; Bochkov et al., 1999). The terminology for morphology and leg chaetotaxy follows that of Kethley (1970). All measurements, including scale bars in figures, are given in micrometers (µm). The setal measurements of the holotype are incomplete, because some setae are broken; however ranges of setal lengths are given for 10 paratypes.

Abbreviations for locations where the type materials are deposited:
UAM – Department of Animal Morphology, A. Mickiewicz University, Poznań, Poland;
ZIN – Zoological Institute, St. Petersburg, Russia.

DESCRIPTION

SYRINGOPHILOIDUS HIRUNDINIS SP. N.

• Female (Figs. 1, 2 and 5, 6)
Total length of holotype 800 (790-850 in 10 paratypes). Gnathosoma. Gnathosoma punctuated ventrally. Hypostomal apex as in Figure 5. Stylophore 180 (170-185) long, rounded posteriorly. Peritremes M-shaped; each transverse branch with two-three chambers, each longitudinal branch with seven-nine chambers (Fig. 6). Idiosoma. Cuticular striations as in Figures 1, 2. Propodosomal plate poorly developed, margins indistinct, punctated. Setae vi and ve slightly serrate, other idiosomal setae smooth. Hysterosomal plate poorly developed or absent. Pygidial plate present without punct-
tations. Setae d_2 closer to l_1 than to l_2. Two pairs of anal setae present.

Legs. Coxae I and II punctated, coxae III and IV weakly developed, few or no punctations. Length of setae: sc_1 10 (10-15); sc_2 15 (15-25); sc_3 50 (40-55); sc_4 40 (40-50). Setae p' and p'' of legs III and IV with 7-10 tines. Length of setae ic' of tarsi III and IV (60-65), ic'' of tarsi III and IV (85-95).

Lengths of setae: vi 105 (90-110); ve 195 (180-220); sc_1 255 (240-260); h (295-315); d_1 295 (285-300); sce 295 (280-320); l_1 265 (215-250); d_2 235 (235-275); l_2 200 (230-240); l_4 400 (385-450); d_5 40 (40-45); ic_1 160 (160-165); ic_3 140 (100-135); gl and g_2 subequal 40 (40-50); a_1 and a_2 subequal (50-55); pg_1 200 (150-200); pg_2 175 (175-210); pg_3 225 (220-245).

• Male (Figs 3, 4 and 7, 8)
Total length 525-545 in three paratypes.

Gnathosoma. Gnathosoma punctated ventrally. Hypostomal apex as in Figure 7. Stylophore 145-155 long, weakly constricted posteriorly. Peritremes M-shaped; each transverse branch with two-three chambers, each longitudinal branch with six-seven chambers (Fig. 8).

Idiosoma. Cuticular striations as in Figures 3, 4. All dorsal plates (propodosomal, hysterosomal and pygi-
Syringophiloides hirundinis sp. n.

Figs 3, 4. *Syringophiloides hirundinis* sp. n. Male. 3. Dorsal view. 4. Ventral view.

Figs 5, 6. *Syringophiloides hirundinis* sp. n. Female. 5. Hypostomal apex ventral view. 6. Peritremes.

Figs 7, 8. *Syringophiloides hirundinis* sp. n. Male. 7. Hypostomal apex ventral view. 8. Peritremes.

dial) poorly developed, margins indistinct. Length of setae: *vi* 50-65; *ve* 100; *d1* 195; *sce* 165-185. Propodosomal setae smooth. Setae *d2* closer to *l1* than to *l2.* Legs. Coxae I-IV with few or no punctations. Length of setae: *sc1* 10; *sc2* 15; *sc3* 25-35; *sc4* 20-25. Setae *p*’ and *p*’’ of legs III and IV with 7-10 tines. Length of setae *tc,* of tarsi III and IV 35-40; *tc*’’ of tarsi III and IV 60-65.

Lengths of setae: *vi* 100-130; *ve* 170-175; *sci* variable 50-60 or 160; *b* 175-200; *d1* 230; *sce* 220-255; *l1* variable 45-55 or 90-95; *d2* 30-40; *l2* 20-30; *d5* 40-60; *l5* 275-285; *ic1* 130-135; *ic3* 90-100; *pg1* 135-150; *pg2* 95-120. Distances between setal bases: *l1-d2* 35-40; *d2-l2* 50.

- **Type material**
 Female holotype (S-40.1.1), 19 female, three male, 11 nymph and four larvae paratypes from Barn Swallow *Hirundo rustica* (Passeriformes: Hirundinidae); Milano, Italy; 17 June 1993; leg. A. Moller, det. M. Skoracki. Holotype, 17 female, two male, 11 nymph and four lar­vae paratypes are deposited at UAM; two female and one male paratypes are deposited at ZIN.

- **Etymology**
 The name refers to the generic name of the host.
• Differential diagnosis

Syringophiloidus birundinis sp. n. is closely related to S. cypsiuri Fain, Bochkov & Mironov, 2000 described from Cypsiurus parvus (Apodiformes: Apodidae) from the Congo (Africa). In both species the propodosomal setae are smooth, setae vi longer than 70, ve longer than 150. This new species is distinguishable from above mentioned species by the presence of the following characters. In the female S. birundinis sp. n., lengths of setae: $l1$ 315-350; $l5$ 405-450; $pg2$ 170-210; a 50-55; tc’ III and IV 60-65. In the male, lengths of setae vi and $l5$ 170-175 and 275-285 respectively; length of setae II longer than $l2$. In the female S. cypsiuri, lengths of setae: $l1$ 220; $l5$ 275; $pg2$ 110-115; a 30; tc’ III and IV 40-45. In the male, lengths of setae vi and $l5$ 110 and 180 respectively; setae II and $l2$ subequal.

• Ecological comments

Quill mites live within the calamus of bird feathers. The mites enter through the superior umbilicus of the feather during the growth of feathers of nestlings or during moult. Only adult female mites disperse (Kethley, 1971). Transmission is vertical from parent hosts to their offspring during reproduction and horizontal from one adult host individual to another during moult. Since Barn Swallows are highly gregarious during the winter, when the single annual moult takes place (Turner & Rose, 1989), frequent contact between individuals during communal roosting should facilitate horizontal transmission. Quill mites of the species Syringophiloidus birundinis had a prevalence of 17.1 % in the two outermost tail feathers (N = 208 adult the Barn Swallows) during the breeding season of the Barn Swallow host. The outermost tail feathers were collected from all individual barn swallows captured during extensive studies of reproductive biology and behaviour of the species. The material is presented in Moller et al. (1995). Intensity of infestation was 9.7 adult (SE = 2.2) mites per pair of outermost tail feathers among infested individuals. The sex ratio was highly biased towards females, with only 7.5 % of all individuals being males. This pattern is common among quill mites (e.g. Kethley, 1971; Casto, 1975). The optimal sex ratio will depend on the frequency of multiple infestations (Hamilton, 1967, 1979). The frequency of multiple infestations in the barn swallow remains to be determined, although frequently recorded dead female quill mites in other hosts (e.g. Casto, 1975) could be interpreted as arising from interactions between multiple founding females and corresponding with their lower fitness advantage than during solitary infestation (Kethley, 1975).

ACKNOWLEDGEMENTS

We thank F. de Lope and N. Saino for field material and an anonymous referee for comment on earlier version of the paper. MS and PT were partially supported by UAM-AM grant (PU II/17) and UAM grant (206/2000). MS was supported by the Foundation for Polish Science (2002).

REFERENCES

BOCHKOVA V. & MIRONOV S.V. Quill mites of the family Syringophilidae Lavoipierre, 1953 (Acari: Prostigmata) parasitic on birds (Aves) of the fauna of the former USSR. Acarina, 1998, 6, 3-16.

